43 lines
1.1 KiB
Python
43 lines
1.1 KiB
Python
from datetime import datetime
|
|
import pytest
|
|
from pathlib import Path
|
|
import torch
|
|
import os
|
|
|
|
from . import check_bad_imports
|
|
from mmp.a2 import main
|
|
|
|
current_assignment = pytest.mark.skipif(
|
|
not (datetime(2025, 10, 23) <= datetime.now() <= datetime(2025, 10, 29, 23, 59, 59)),
|
|
reason="This is not the current assignment.",
|
|
)
|
|
|
|
|
|
@current_assignment
|
|
def test_no_abs_import():
|
|
paths = list(Path().glob("mmp/a2/*.py"))
|
|
check_bad_imports(paths)
|
|
|
|
|
|
@current_assignment
|
|
def test_main():
|
|
assert issubclass(main.MmpNet, torch.nn.Module)
|
|
net = main.MmpNet(12)
|
|
assert isinstance(net(torch.rand(2, 3, 128, 128)), torch.Tensor)
|
|
|
|
loader = main.get_dataloader(
|
|
is_train=False,
|
|
data_root=os.path.join(os.environ["TORCH_HOME"], "datasets"),
|
|
batch_size=2,
|
|
num_workers=0,
|
|
)
|
|
x = next(iter(loader))
|
|
crit, opt = main.get_criterion_optimizer(net)
|
|
assert isinstance(
|
|
crit(torch.rand(10, 4), (torch.rand(10) * 2).long()), torch.Tensor
|
|
)
|
|
assert isinstance(opt, torch.optim.Optimizer)
|
|
main.train_epoch
|
|
main.eval_epoch
|
|
main.main
|