Files
mmp_wise2526_franksim/mmp/a3/document.tex
2025-11-04 09:35:16 +01:00

82 lines
2.3 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
\documentclass[11pt,a4paper]{article}
% Language and encoding settings
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
% Page formatting
\usepackage[left=1in, right=1in, top=1in, bottom=1in]{geometry}
\usepackage{setspace}
\onehalfspacing
% Header/Footer
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhf{} % clear all header and footer fields
\fancyhead[L]{\textbf{\course}}
\fancyhead[C]{Assignment \assignmentnumber}
\fancyhead[R]{\name}
\fancyfoot[C]{\thepage}
% Other packages
\usepackage{enumitem}
\usepackage{graphicx}
% Custom commands for easy detail insertion
\newcommand{\assignmentnumber}{03} % <-- CHANGE Assignment Number
\newcommand{\name}{Simon Franken} % <-- CHANGE YOUR NAME
\newcommand{\course}{Multimedia Project WiSe 2526} % <-- CHANGE COURSE NAME
\newcommand{\duedate}{2025-11-05} % <-- CHANGE DUE DATE
% Title formatting
\usepackage{titling}
\pretitle{
\vspace*{2cm}
\begin{center}
\LARGE\bfseries
}
\posttitle{\par\end{center}\vspace{1cm}}
\begin{document}
\title{Assignment \assignmentnumber}
\author{\name}
\date{\duedate}
\maketitle
\begin{center}
\textbf{Course:} \course
\end{center}
\vspace{0.5cm}
%------------------ START OF ASSIGNMENT -----------------------
% Write your solutions below
\section*{Exercise 3.1 Dataset Parsing}
\begin{enumerate}[label=\alph*)]
\setcounter{enumi}{2}
\item \begin{figure}[htp]
\centering
\includegraphics[width=4cm]{output.jpg}
\caption{02254418.jpg with 18 annotations}
\end{figure}
\end{enumerate}
\section*{Exercise 3.3 Training}
\begin{tabular}{|c||c|}
\hline Batch size & 32 \\
\hline Training epoches & 10 \\
\hline Loss & 0.3719 \\
\hline Accuracy & 78.90 \% \\
\hline
\end{tabular}
\\
The accuracy metric isnt ideal because its quite intuitive to classify whether an object appears once or more in an image. In this case, the model might not have guessed the correct number of objects (e.g., 3 instead of 2), but the result will still be interpreted as accurate. This also makes it more challenging to backpropagate. A better approach would be to output the actual number of objects (in this case, humans).
%------------------ END OF ASSIGNMENT -----------------------
\end{document}