from typing import Tuple import torch from torch.utils.data import DataLoader class MMP_Dataset(torch.utils.data.Dataset): """Exercise 3.2""" def __init__(self, path_to_data: str, image_size: int): """ @param path_to_data: Path to the folder that contains the images and annotation files, e.g. dataset_mmp/train @param image_size: Desired image size that this dataset should return """ raise NotImplementedError() def __getitem__(self, idx: int) -> Tuple[torch.Tensor, int]: """ @return: Tuple of image tensor and label. The label is 0 if there is one person and 1 if there a multiple people. """ raise NotImplementedError() def __len__(self) -> int: raise NotImplementedError() def get_dataloader( path_to_data: str, image_size: int, batch_size: int, num_workers: int, is_train: bool = True ) -> DataLoader: """Exercise 3.2d"""