import os import re from typing import Sequence, Tuple import numpy as np import torch from torch.utils.data import DataLoader from ..a3.annotation import read_groundtruth_file, AnnotationRect from .label_grid import get_label_grid, draw_annotation_rects import matplotlib.pyplot as plt import matplotlib.patches as patches from .anchor_grid import get_anchor_grid from PIL import Image from torchvision.transforms import transforms from itertools import islice class MMP_Dataset(torch.utils.data.Dataset): def __init__( self, path_to_data: str, image_size: int, anchor_grid: np.ndarray, min_iou: float, is_test: bool, ): """ @param anchor_grid: The anchor grid to be used for every image @param min_iou: The minimum IoU that is required for an overlap for the label grid. @param is_test: Whether this is the test set (True) or the validation/training set (False) """ self.image_size = image_size self.images = [] self.anchor_grid = anchor_grid self.min_iou = min_iou self.is_test = is_test img_pattern = re.compile(r"^(\d+)\.jpg$") files = set(os.listdir(path_to_data)) for fname in files: match = img_pattern.match(fname) if match: img_file = os.path.join(path_to_data, fname) annotations = read_groundtruth_file( os.path.join(path_to_data, f"{match.group(1)}.gt_data.txt") ) self.images.append((img_file, annotations)) self.images.sort( key=lambda x: int(re.match(r"(.*/)(\d+)(\.jpg)", x[0]).group(2)) ) def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, int]: """ @return: 3-tuple of image tensor, label grid, and image (file-)number """ img = Image.open(self.images[idx][0]).convert("RGB") padding = self.__padding__(img) transform = transforms.Compose( [ transforms.Pad(padding, 0), transforms.Resize((self.image_size, self.image_size)), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ] ) img_tensor = transform(img) label_grid = get_label_grid( anchor_grid=self.anchor_grid, gts=self.images[idx][1], min_iou=self.min_iou ) img_id = re.match(r".*(\/)([0-9]+)(\.[^\/]*$)", self.images[idx][0]).group(2) return (img_tensor, label_grid, int(img_id)) def __len__(self) -> int: return len(self.images) def __padding__(self, img) -> Tuple[int, int, int, int]: w, h = img.size size = max(w, h) right_pad = size - w bottom_pad = size - h return (0, 0, right_pad, bottom_pad) def get_dataloader( path_to_data: str, image_size: int, batch_size: int, num_workers: int, anchor_grid: np.ndarray, is_test: bool, is_train: bool = False, ) -> DataLoader: dataset = MMP_Dataset( path_to_data=path_to_data, image_size=image_size, is_test=is_test, anchor_grid=anchor_grid, min_iou=0.7, ) dataloader = DataLoader( dataset, batch_size=batch_size, shuffle=is_train, num_workers=num_workers, pin_memory=True, ) return dataloader def calculate_max_coverage(loader: DataLoader, min_iou: float) -> float: """ @param loader: A DataLoader object, generated with the get_dataloader function. @param min_iou: Minimum IoU overlap that is required to count a ground truth box as covered. @return: Ratio of how mamy ground truth boxes are covered by a label grid box. Must be a value between 0 and 1. """ raise NotImplementedError() def print_img_tensor_with_annotations( img: torch.Tensor, annotations: Sequence["AnnotationRect"], output_file: str ): # Convert tensor to numpy, permute dimensions img_np = img.permute(1, 2, 0).cpu().numpy() img_np = img_np.astype(np.uint8) fig, ax = plt.subplots(1) ax.imshow(img_np) for rect in annotations: x1, y1, x2, y2 = rect.x1, rect.y1, rect.x2, rect.y2 w = x2 - x1 h = y2 - y1 patch = patches.Rectangle( (x1, y1), w, h, linewidth=2, edgecolor="red", facecolor="none" ) ax.add_patch(patch) plt.axis("off") plt.tight_layout(pad=0) plt.savefig(output_file, bbox_inches="tight", pad_inches=0) plt.close(fig) def print_positive_boxes( img_tensor: torch.Tensor, label_grid: np.ndarray, img_id: torch.Tensor, anchor_grid: np.ndarray, path_to_data: str, ): annotations = [ AnnotationRect.fromarray(anchor_grid[idx]) for idx in np.ndindex(anchor_grid.shape[:-1]) if label_grid[idx] ] print_img_tensor_with_annotations( img_tensor, annotations=annotations, output_file=f"mmp/a4/{img_id}_transformed.png", ) draw_annotation_rects( annotations=annotations, image=f"{os.path.join(path_to_data, f'{str(img_id.item()).zfill(8)}.jpg')}", output_path=f"mmp/a4/{img_id}_original.png", ) def main(): anchor_grid = get_anchor_grid( anchor_widths=[16, 32, 64, 96, 128, 144, 150, 160, 192, 224, 256], aspect_ratios=[1 / 3, 1 / 2, 3 / 5, 2 / 3, 3 / 4, 1, 4 / 3, 5 / 3, 2, 2.5, 3], num_rows=32, num_cols=32, scale_factor=20, ) dataloader = get_dataloader( num_workers=6, is_train=True, is_test=False, batch_size=8, image_size=224, path_to_data=".data/mmp-public-3.2/train", anchor_grid=anchor_grid, ) for img, label, img_id in islice(dataloader, 12): print_positive_boxes( img_tensor=img[5], label_grid=label[5], img_id=img_id[5], anchor_grid=anchor_grid, path_to_data=".data/mmp-public-3.2/train", ) if __name__ == "__main__": main()