from typing import Sequence import torch from torchvision.transforms import functional as F from torchvision import transforms, models from PIL import Image def pad_to_square(img): w, h = img.size max_wh = max(w, h) pad = ((max_wh - w) // 2, (max_wh - h) // 2) padding = (pad[0], pad[1], max_wh - w - pad[0], max_wh - h - pad[1]) return F.pad(img, padding, fill=0, padding_mode='constant') def build_batch(paths: Sequence[str], transform=None) -> torch.Tensor: """Exercise 1.1 @param paths: A sequence (e.g. list) of strings, each specifying the location of an image file. @param transform: One or multiple image transformations for augmenting the batch images. @return: Returns one single tensor that contains every image. """ preprocess = transforms.Compose([ transforms.Lambda(pad_to_square), transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) imgs = [] for path in paths: img = Image.open(path).convert('RGB') img = preprocess(img) imgs.append(img) batch = torch.stack(imgs) return batch def get_model() -> torch.nn.Module: """Exercise 1.2 @return: Returns a neural network, initialised with pretrained weights. """ model = models.resnet18( weights=models.ResNet18_Weights.DEFAULT) return model def main(): """Exercise 1.3 Put all your code for exercise 1.3 here. """ raise NotImplementedError() if __name__ == "__main__": main()