Compare commits

...

10 Commits

Author SHA1 Message Date
franksim
a6f70005f2 adds nms and eval 2025-12-02 11:04:47 +01:00
franksim
3b6a588719 Merge branch 'assignment-a5' into 'main'
Assignment a5

See merge request mmc-mmp/mmp_wise2526_franksim!4
2025-11-18 09:53:18 +01:00
franksim
c50d9e83b8 adapts metrics 2025-11-18 09:14:23 +01:00
franksim
f21fb57303 adds documentation 2025-11-16 16:39:17 +01:00
franksim
edbad414e2 adds solutions 2025-11-16 16:28:13 +01:00
franksim
721e46b768 undo renaming 2025-11-11 11:09:42 +01:00
franksim
56e21a1e54 renaming 2025-11-11 11:08:07 +01:00
franksim
7245042b54 performance improvements 2025-11-11 10:52:27 +01:00
franksim
a00ddedb23 adapts doc 2025-11-09 17:52:35 +01:00
franksim
5c8e06f62f small impovements 2025-11-09 17:49:50 +01:00
54 changed files with 865 additions and 990 deletions

View File

@@ -25,6 +25,7 @@ class AnnotationRect:
self.x2 *= factor
self.y1 *= factor
self.y2 *= factor
return self
@staticmethod
def fromarray(arr: np.ndarray):

Binary file not shown.

After

Width:  |  Height:  |  Size: 180 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 141 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 140 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 241 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 202 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 159 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 152 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 260 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 226 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 214 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 238 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 223 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 285 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 429 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 141 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 252 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 192 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 150 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 243 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 432 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 234 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 274 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 349 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 257 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 51 KiB

View File

@@ -5,7 +5,7 @@ import numpy as np
import torch
from torch.utils.data import DataLoader
from ..a3.annotation import read_groundtruth_file, AnnotationRect
from .label_grid import get_label_grid, draw_annotation_rects
from .label_grid import get_label_grid
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from .anchor_grid import get_anchor_grid
@@ -29,10 +29,11 @@ class MMP_Dataset(torch.utils.data.Dataset):
@param is_test: Whether this is the test set (True) or the validation/training set (False)
"""
self.image_size = image_size
self.images: Sequence[Tuple[str, Sequence[AnnotationRect]]] = []
self.images: Sequence[Tuple[str, str | None]] = []
self.anchor_grid = anchor_grid
self.min_iou = min_iou
self.is_test = is_test
self.path_to_data = path_to_data
img_pattern = re.compile(r"^(\d+)\.jpg$")
files = set(os.listdir(path_to_data))
@@ -42,11 +43,10 @@ class MMP_Dataset(torch.utils.data.Dataset):
img_file = os.path.join(path_to_data, fname)
if is_test:
self.images.append((img_file, None))
else:
annotations = read_groundtruth_file(
os.path.join(path_to_data, f"{match.group(1)}.gt_data.txt")
)
self.images.append((img_file, annotations))
annotation_file = os.path.join(
path_to_data, f"{match.group(1)}.gt_data.txt"
)
self.images.append((img_file, annotation_file))
self.images.sort(
key=lambda x: int(re.match(r"(.*/)(\d+)(\.jpg)", x[0]).group(2))
@@ -73,13 +73,13 @@ class MMP_Dataset(torch.utils.data.Dataset):
if self.is_test:
return (img_tensor, torch.Tensor(), int(img_id))
scaled_annotations = []
for annotation in self.images[idx][1]:
annotations = [
annotation.scale(self.image_size / max(img.size[0], img.size[1]))
scaled_annotations.append(annotation)
for annotation in read_groundtruth_file(self.images[idx][1])
]
label_grid = get_label_grid(
anchor_grid=self.anchor_grid, gts=scaled_annotations, min_iou=self.min_iou
anchor_grid=self.anchor_grid, gts=annotations, min_iou=self.min_iou
)
return (img_tensor, label_grid, int(img_id))
@@ -120,21 +120,93 @@ def get_dataloader(
return dataloader
def calculate_max_coverage(loader: DataLoader, min_iou: float) -> float:
def calculate_max_coverage(loader, min_iou):
"""
@param loader: A DataLoader object, generated with the get_dataloader function.
@param min_iou: Minimum IoU overlap that is required to count a ground truth box as covered.
@return: Ratio of how mamy ground truth boxes are covered by a label grid box. Must be a value between 0 and 1.
@param loader: DataLoader object.
@param min_iou: Minimum IoU overlap to count a ground truth box as covered.
@return: Ratio of how many ground truth boxes are covered by a label grid box. Value between 0 and 1.
"""
raise NotImplementedError()
total_boxes = 0
covered_boxes = 0
dataset = loader.dataset
anchor_grid = dataset.anchor_grid # Shape: (H, W, 4)
# Reshape anchor grid to (N, 4)
anchors = anchor_grid.reshape(-1, 4)
for img, _, img_id in loader:
for batch_index in range(len(img)):
gts_file = os.path.join(
dataset.path_to_data,
f"{str(img_id[batch_index].item()).zfill(8)}.gt_data.txt",
)
# Load and scale ground truth boxes if necessary
with Image.open(
os.path.join(
dataset.path_to_data,
f"{str(img_id[batch_index].item()).zfill(8)}.jpg",
)
) as original_image:
original_w, original_h = original_image.size
# Assume square resize for model, get transform size from img tensor
transformed_size = img[batch_index].shape[-1]
scale = transformed_size / max(original_w, original_h)
annotations = [
annotation.scale(scale)
for annotation in read_groundtruth_file(gts_file)
]
gt_boxes = np.stack(
[np.array(a) for a in annotations], axis=0
) # shape (M, 4)
total_boxes += len(gt_boxes)
# Vectorized IoU calculation: (M, N)
ious = compute_ious_vectorized(gt_boxes, anchors) # shape (M, N)
# Count ground truths for which any anchor box matches min_iou
covered = (ious >= min_iou).any(axis=1).sum()
covered_boxes += covered
return covered_boxes / total_boxes if total_boxes > 0 else 0.0
def print_img_tensor_with_annotations(
img: torch.Tensor, annotations: Sequence["AnnotationRect"], output_file: str
def compute_ious_vectorized(boxes1, boxes2):
"""
Compute the IoU matrix between each box in boxes1 and each box in boxes2.
boxes1: (M, 4), boxes2: (N, 4) -- format [x1, y1, x2, y2]
Returns: (M, N) IoU
"""
# Expand to (M, N, 4)
boxes1 = boxes1[:, None, :] # (M, 1, 4)
boxes2 = boxes2[None, :, :] # (1, N, 4)
# Intersection box
inter_x1 = np.maximum(boxes1[..., 0], boxes2[..., 0])
inter_y1 = np.maximum(boxes1[..., 1], boxes2[..., 1])
inter_x2 = np.minimum(boxes1[..., 2], boxes2[..., 2])
inter_y2 = np.minimum(boxes1[..., 3], boxes2[..., 3])
inter_w = np.clip(inter_x2 - inter_x1, 0, None)
inter_h = np.clip(inter_y2 - inter_y1, 0, None)
inter_area = inter_w * inter_h
area1 = (boxes1[..., 2] - boxes1[..., 0]) * (boxes1[..., 3] - boxes1[..., 1])
area2 = (boxes2[..., 2] - boxes2[..., 0]) * (boxes2[..., 3] - boxes2[..., 1])
union_area = area1 + area2 - inter_area
return inter_area / (union_area + 1e-6)
def draw_image_tensor_with_annotations(
img: torch.Tensor,
annotations: Sequence["AnnotationRect"] | None,
output_file: str,
):
# Convert tensor to numpy, permute dimensions
img_np = img.permute(1, 2, 0).cpu().numpy()
img_np = img_np.astype(np.uint8)
img_np = img.permute(1, 2, 0).numpy()
img_np = np.clip(img_np, 0, 1)
fig, ax = plt.subplots(1)
ax.imshow(img_np)
@@ -152,40 +224,43 @@ def print_img_tensor_with_annotations(
plt.close(fig)
def print_positive_boxes(
def denormalize_image_tensor(
img: torch.Tensor,
mean=torch.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1),
std=torch.tensor([0.229, 0.224, 0.225]).view(-1, 1, 1),
) -> torch.Tensor:
img_denormalized = img * std + mean
return img_denormalized
def draw_positive_boxes(
img_tensor: torch.Tensor,
label_grid: np.ndarray,
img_id: torch.Tensor,
anchor_grid: np.ndarray,
path_to_data: str,
):
annotations = [
AnnotationRect.fromarray(anchor_grid[idx])
for idx in np.ndindex(anchor_grid.shape[:-1])
if label_grid[idx]
]
print_img_tensor_with_annotations(
draw_image_tensor_with_annotations(
img_tensor,
annotations=annotations,
output_file=f"mmp/a4/{img_id}_transformed.png",
)
draw_annotation_rects(
annotations=annotations,
image=f"{os.path.join(path_to_data, f'{str(img_id.item()).zfill(8)}.jpg')}",
output_path=f"mmp/a4/{img_id}_original.png",
output_file=f"mmp/a4/.output/{img_id}_transformed.png",
)
def main():
anchor_grid = get_anchor_grid(
anchor_widths=[16, 32, 64, 96, 128, 144, 150, 160, 192, 224, 256],
aspect_ratios=[1 / 3, 1 / 2, 3 / 5, 2 / 3, 3 / 4, 1, 4 / 3, 5 / 3, 2, 2.5, 3],
num_rows=32,
num_cols=32,
scale_factor=20,
anchor_widths=[8, 16, 32, 64, 96, 128, 160, 192],
aspect_ratios=[1 / 2, 2 / 3, 1, 4 / 3, 5 / 3, 2, 2.5, 3],
num_rows=28,
num_cols=28,
scale_factor=8,
)
dataloader = get_dataloader(
num_workers=6,
num_workers=9,
is_train=True,
is_test=False,
batch_size=8,
@@ -194,13 +269,14 @@ def main():
anchor_grid=anchor_grid,
)
# print(calculate_coverage(dataloader, 0.7))
for img, label, img_id in islice(dataloader, 12):
print_positive_boxes(
img_tensor=img[5],
draw_positive_boxes(
img_tensor=denormalize_image_tensor(img=img[5]),
label_grid=label[5],
img_id=img_id[5],
anchor_grid=anchor_grid,
path_to_data=".data/mmp-public-3.2/train",
)

Binary file not shown.

View File

@@ -47,7 +47,7 @@
\maketitle
\begin{center}
\textbf{Course:} \course
\textbf{Course:} \course
\end{center}
\vspace{0.5cm}
@@ -57,14 +57,22 @@
\section*{Exercise 4.2 Label Grid}
\begin{enumerate}[label=\alph*)]
\setcounter{enumi}{2}
\item \begin{figure}[htp]
\centering
\includegraphics[width=4cm]{output.jpg}
\caption{output.txt}
\end{figure}
\setcounter{enumi}{2}
\item \begin{figure}[htp]
\centering
\includegraphics[width=4cm]{output.jpg}
\caption{output.txt}
\end{figure}
\end{enumerate}
\section*{Exercise 4.3 Finalizing the Data Pipeline}
\begin{enumerate}[label=\alph*)]
\setcounter{enumi}{2}
\item The generated images can be found at `.output/`.
\end{enumerate}
%------------------ END OF ASSIGNMENT -----------------------
\end{document}

BIN
mmp/a5/document.pdf Normal file

Binary file not shown.

82
mmp/a5/document.tex Normal file
View File

@@ -0,0 +1,82 @@
\documentclass[11pt,a4paper]{article}
% Language and encoding settings
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
% Page formatting
\usepackage[left=1in, right=1in, top=1in, bottom=1in]{geometry}
\usepackage{setspace}
\onehalfspacing
% Header/Footer
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhf{} % clear all header and footer fields
\fancyhead[L]{\textbf{\course}}
\fancyhead[C]{Assignment \assignmentnumber}
\fancyhead[R]{\name}
\fancyfoot[C]{\thepage}
% Other packages
\usepackage{enumitem}
\usepackage{graphicx}
% Custom commands for easy detail insertion
\newcommand{\assignmentnumber}{05} % <-- CHANGE Assignment Number
\newcommand{\name}{Simon Franken} % <-- CHANGE YOUR NAME
\newcommand{\course}{Multimedia Project WiSe 2526} % <-- CHANGE COURSE NAME
\newcommand{\duedate}{2025-11-26} % <-- CHANGE DUE DATE
% Title formatting
\usepackage{titling}
\pretitle{
\vspace*{2cm}
\begin{center}
\LARGE\bfseries
}
\posttitle{\par\end{center}\vspace{1cm}}
\begin{document}
\title{Assignment \assignmentnumber}
\author{\name}
\date{\duedate}
\maketitle
\begin{center}
\textbf{Course:} \course
\end{center}
\vspace{0.5cm}
%------------------ START OF ASSIGNMENT -----------------------
% Write your solutions below
\section*{Exercise 5.2 Training}
\begin{figure}[htp]
\centering
\includegraphics[width=14cm]{image0.png}
\end{figure}
\section*{Exercise 5.3 Negative Mining}
\begin{figure}[htp]
\centering
\includegraphics[width=14cm]{image1.jpg}
\includegraphics[width=14cm]{image2.png}
\end{figure}
The idea of negative mining is, to get a certain balance between positive and negative labels.
Especially in our case it is important, since there are a lot more negative boxes then positive ones.
By sampling a random subset of negatives.
In my case I could observe that the loss was actually higher with negative mining. But the accuracy was better.
%------------------ END OF ASSIGNMENT -----------------------
\end{document}

BIN
mmp/a5/image0.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

BIN
mmp/a5/image1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

BIN
mmp/a5/image2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

View File

@@ -1,7 +1,16 @@
import argparse
import torch
import torch.optim as optim
import torch.nn as nn
from torch.utils.data import DataLoader
from tqdm import tqdm
import datetime
from .model import MmpNet
from ..a4.anchor_grid import get_anchor_grid
from ..a4.dataset import get_dataloader
from ..a2.main import get_criterion_optimizer
from ..a6.main import evaluate as evaluate_v2
def step(
@@ -11,11 +20,19 @@ def step(
img_batch: torch.Tensor,
lbl_batch: torch.Tensor,
) -> float:
"""Performs one update step for the model
model.train()
optimizer.zero_grad()
@return: The loss for the specified batch. Return a float and not a PyTorch tensor
"""
raise NotImplementedError()
device = next(model.parameters()).device
img_batch = img_batch.to(device)
lbl_batch = lbl_batch.to(device)
outputs = model(img_batch)
loss = criterion(outputs, lbl_batch)
loss.backward()
optimizer.step()
return loss.item()
def get_random_sampling_mask(labels: torch.Tensor, neg_ratio: float) -> torch.Tensor:
@@ -26,13 +43,187 @@ def get_random_sampling_mask(labels: torch.Tensor, neg_ratio: float) -> torch.Te
Hint: after computing the mask, check if the neg_ratio is fulfilled.
@return: A tensor with the same shape as labels
"""
assert labels.min() >= 0 and labels.max() <= 1 # remove this line if you want
raise NotImplementedError()
# Flatten for easier indexing
labels_flat = labels.view(-1)
pos_indices = (labels_flat == 1).nonzero(as_tuple=True)[0]
neg_indices = (labels_flat == 0).nonzero(as_tuple=True)[0]
num_pos = pos_indices.numel()
num_neg = neg_indices.numel()
num_neg_to_sample = min(int(neg_ratio * num_pos), num_neg)
perm = torch.randperm(num_neg, device=labels.device)
sampled_neg_indices = neg_indices[perm[:num_neg_to_sample]]
mask_flat = torch.zeros_like(labels_flat, dtype=torch.long)
mask_flat[pos_indices] = 1
mask_flat[sampled_neg_indices] = 1
# Reshape to original shape
mask = mask_flat.view_as(labels)
return mask
def evaluate(
model: MmpNet,
criterion,
dataloader: DataLoader,
) -> float:
device = next(model.parameters()).device
model.eval()
total_loss = 0.0
total_samples = 0
all_outputs = []
all_labels = []
with torch.no_grad():
for img_batch, lbl_batch, _ in dataloader:
img_batch = img_batch.to(device)
lbl_batch = lbl_batch.to(device)
outputs = model(img_batch)
loss = criterion(outputs, lbl_batch)
batch_size = img_batch.size(0)
total_loss += loss.item() * batch_size
total_samples += batch_size
all_outputs.append(outputs.cpu())
all_labels.append(lbl_batch.cpu())
avg_loss = total_loss / total_samples if total_samples > 0 else 0.0
return avg_loss
def train(
model: MmpNet,
loader: DataLoader,
criterion: nn.Module,
optimizer: optim.Optimizer,
):
model.train()
running_loss = 0.0
total_samples = 0
progress_bar = tqdm(loader, desc="Training", unit="batch")
for img_batch, lbl_batch, _ in progress_bar:
loss = step(
model=model,
criterion=criterion,
optimizer=optimizer,
img_batch=img_batch,
lbl_batch=lbl_batch,
)
batch_size = img_batch.size(0)
running_loss += loss * batch_size
total_samples += batch_size
progress_bar.set_postfix(
{"loss": running_loss / total_samples if total_samples > 0 else 0.0}
)
epoch_loss = running_loss / total_samples if total_samples > 0 else 0.0
progress_bar.close()
return epoch_loss
class NegativeMiningCriterion(nn.Module):
def __init__(self, neg_ratio=3.0, enable_negative_mining: bool = True):
super().__init__()
self.backbone = nn.CrossEntropyLoss(reduction="none")
self.neg_ratio = neg_ratio
self.enable_negative_mining = enable_negative_mining
def forward(self, outputs, labels):
outputs_flat = outputs.view(-1, outputs.shape[-1])
labels_flat = labels.view(-1).long()
unfiltered = self.backbone(outputs_flat, labels_flat)
assert unfiltered.shape == labels_flat.shape
if not self.enable_negative_mining:
return unfiltered.mean()
mask = get_random_sampling_mask(labels_flat, self.neg_ratio)
filtered_loss = unfiltered[mask == 1]
return filtered_loss.mean()
def main():
"""Put your training code for exercises 5.2 and 5.3 here"""
raise NotImplementedError()
parser = argparse.ArgumentParser()
parser.add_argument(
"--tensorboard",
nargs="?",
const=True,
default=False,
help="Enable TensorBoard logging. If a label is provided, it will be used in the log directory name.",
)
args = parser.parse_args()
if args.tensorboard:
from torch.utils.tensorboard import SummaryWriter
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
if isinstance(args.tensorboard, str):
label = args.tensorboard
log_dir = f"runs/a5_mmpnet_{label}_{timestamp}"
else:
log_dir = f"runs/a5_mmpnet_{timestamp}"
writer = SummaryWriter(log_dir=log_dir)
else:
writer = None
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = MmpNet(num_aspect_ratios=8, num_widths=8).to(device)
anchor_grid = get_anchor_grid(
anchor_widths=[8, 16, 32, 64, 96, 128, 160, 192],
aspect_ratios=[1 / 2, 2 / 3, 1, 4 / 3, 5 / 3, 2, 2.5, 3],
num_rows=7,
num_cols=7,
scale_factor=32,
)
dataloader_train = get_dataloader(
path_to_data=".data/mmp-public-3.2/train",
image_size=224,
batch_size=32,
num_workers=9,
is_test=False,
is_train=True,
anchor_grid=anchor_grid,
)
dataloader_val = get_dataloader(
path_to_data=".data/mmp-public-3.2/val",
image_size=224,
batch_size=32,
num_workers=9,
is_test=False,
is_train=False,
anchor_grid=anchor_grid,
)
_, optimizer = get_criterion_optimizer(model=model)
criterion = NegativeMiningCriterion(enable_negative_mining=True)
criterion_eval = NegativeMiningCriterion(enable_negative_mining=False)
num_epochs = 5
for epoch in range(num_epochs):
train_loss = train(
model=model,
loader=dataloader_train,
criterion=criterion,
optimizer=optimizer,
)
avg_loss = evaluate(
model=model, criterion=criterion_eval, dataloader=dataloader_val
)
_ = evaluate_v2(
model=model, device=device, anchor_grid=anchor_grid, loader=dataloader_train
)
if writer is not None:
writer.add_scalar("Loss/train_epoch", train_loss, epoch)
writer.add_scalar("Loss/eval_epoch", avg_loss, epoch)
if writer is not None:
writer.close()
if __name__ == "__main__":

View File

@@ -1,9 +1,40 @@
import torch
from torchvision import models
from torchvision.models import MobileNet_V2_Weights
from torch import nn
class MmpNet(torch.nn.Module):
def __init__(self, num_widths: int, num_aspect_ratios: int):
raise NotImplementedError()
def __init__(self, num_widths: int, num_aspect_ratios: int, num_classes: int = 2):
super().__init__()
self.backbone = models.mobilenet_v2(
weights=MobileNet_V2_Weights.DEFAULT
).features
self.num_widths = num_widths
self.num_aspect_ratios = num_aspect_ratios
self.num_classes = num_classes
def forward(self, x: torch.Tensor) -> torch.Tensor:
raise NotImplementedError()
with torch.no_grad():
dummy = torch.zeros(1, 3, 224, 224)
backbone_out = self.backbone(dummy)
in_channels = backbone_out.shape[1]
self.head = nn.Conv2d(
in_channels=in_channels,
kernel_size=3,
out_channels=self.get_required_output_channels(),
stride=1,
padding=1,
)
def get_required_output_channels(self):
return self.num_widths * self.num_aspect_ratios * self.num_classes
def forward(self, x: torch.Tensor):
x = self.backbone(x)
x = self.head(x)
b, out_c, h, w = x.shape
x = x.view(b, self.num_widths, self.num_aspect_ratios, self.num_classes, h, w)
x = x.permute(0, 1, 2, 4, 5, 3).contiguous()
# Now: (batch, num_widths, num_aspect_ratios, h, w, num_classes)
return x

0
mmp/a6/__init__.py Normal file
View File

View File

@@ -1,25 +1,144 @@
from typing import List, Tuple
import torch
import numpy as np
from tqdm import tqdm
import os
from torch.utils.data import DataLoader
from mmp.a6.evallib import calculate_ap_pr
from ..a4.label_grid import iou
from ..a5.model import MmpNet
from ..a3.annotation import AnnotationRect
from ..a3.annotation import AnnotationRect, read_groundtruth_file
from .nms import non_maximum_suppression
def batch_inference(
model: MmpNet, images: torch.Tensor, device: torch.device, anchor_grid: np.ndarray
) -> List[List[Tuple[AnnotationRect, float]]]:
raise NotImplementedError()
score_thresh = 0.5
nms_thresh = 0.3
model = model.to(device)
model.eval()
images = images.to(device)
anchor_grid = anchor_grid # shape [W, R, h, w, 4]
results = []
with torch.no_grad():
outputs = model(images) # (B, W, R, h, w, 2)
probs = torch.softmax(outputs, dim=-1)[..., 1] # (B, W, R, h, w)
probs_np = probs.cpu().numpy()
batch_size = outputs.shape[0]
for b in range(batch_size):
detections = []
for idx in np.ndindex(anchor_grid.shape[:-1]):
score = probs_np[b][idx]
# if score >= score_thresh:
box = anchor_grid[idx]
rect = AnnotationRect.fromarray(box)
detections.append((rect, float(score)))
detections_nms = non_maximum_suppression(detections, nms_thresh)
results.append(detections_nms)
return results
def evaluate() -> float: # feel free to change the arguments
def evaluate(
model: MmpNet, loader: DataLoader, device: torch.device, anchor_grid: np.ndarray
) -> float:
"""Evaluates a specified model on the whole validation dataset.
@return: AP for the validation set as a float.
You decide which arguments this function should receive
"""
raise NotImplementedError()
path_to_data = ".data/mmp-public-3.2/train"
progress_bar = tqdm(loader, desc="Evaluation", unit="batch")
image_count = 0
ap_total = 0
for img_batch, _, id_batch in progress_bar:
inference = batch_inference(
anchor_grid=anchor_grid, device=device, images=img_batch, model=model
)
gts = get_gts_for_batch(id_batch=id_batch, gt_base_path=path_to_data)
dict_detections = {
img_id.item(): inference[idx] for idx, img_id in enumerate(id_batch)
}
dict_gt = {img_id.item(): gts[idx] for idx, img_id in enumerate(id_batch)}
average_prevision, precision, recall = calculate_ap_pr(dict_detections, dict_gt)
ap_total = (ap_total * image_count + average_prevision) / (
image_count + id_batch.shape[0]
)
image_count += id_batch.shape[0]
progress_bar.set_postfix(
{
"ap": ap_total,
}
)
return ap_total
def get_gts_for_batch(
id_batch: torch.Tensor, gt_base_path: str
) -> List[List[AnnotationRect]]:
return [
read_groundtruth_file(
os.path.join(gt_base_path, f"{str(img_id.item()).zfill(8)}.gt_data.txt")
)
for img_id in id_batch
]
def calc_tp_fp_fn(
detections: List[Tuple[AnnotationRect, float]],
gts: List[AnnotationRect],
iou_threshold: float = 0.5,
confidence_threshhold: float = 0.5,
) -> tuple[int, int, int]:
"""
Calculates precision and recall for object detection results on a single image.
Args:
detections: List of (AnnotationRect, confidence) tuples representing predicted boxes and scores. Should be sorted by descending confidence.
gts: List of AnnotationRect for ground truth.
iou_threshold: Minimum IoU to consider a detection a true positive.
confidence_threshhold: Minimum confidence required to include a detection.
Returns:
num_tp: Number of true positives (int).
num_fp: Number of false positives (int).
num_fn: Number of false negatives (int).
"""
detections = [det for det in detections if det[1] >= confidence_threshhold]
detections.sort(key=lambda x: x[1], reverse=True)
matches = set()
fp = 0
tp = 0
for det_rect, _ in detections:
iou_map = [iou(det_rect, gt_rect) for gt_rect in gts]
if len(iou_map) == 0:
fp += 1
continue
max_idx = np.argmax(iou_map)
if max_idx in matches or iou_map[max_idx] < iou_threshold:
fp += 1
continue
matches.add(max_idx)
tp += 1
fn = len(gts) - len(matches)
return tp, fp, fn
def evaluate_test(): # feel free to change the arguments

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,9 @@
import os
from typing import List, Sequence, Tuple
from ..a3.annotation import AnnotationRect
from ..a4.label_grid import iou, draw_annotation_rects
from collections import defaultdict
def non_maximum_suppression(
@@ -12,4 +15,68 @@ def non_maximum_suppression(
@return: A list of tuples of the remaining boxes after NMS together with their scores
"""
raise NotImplementedError()
if not boxes_scores:
return []
# Sort the boxes by score in descending order
boxes_scores_sorted = sorted(boxes_scores, key=lambda bs: bs[1], reverse=True)
result = []
while boxes_scores_sorted:
# Select the box with highest score and remove it from the list
curr_box, curr_score = boxes_scores_sorted.pop(0)
result.append((curr_box, curr_score))
# Remove boxes with IoU > threshold
new_boxes = []
for box, score in boxes_scores_sorted:
if iou(curr_box, box) <= threshold:
new_boxes.append((box, score))
boxes_scores_sorted = new_boxes
return result
def read_boxes_from_file(filepath: str) -> List[Tuple[str, AnnotationRect, float]]:
"""
Reads a file containing bounding boxes and scores in the format:
{image_number} {x1} {y1} {x2} {y2} {score}
Returns a list of tuples: (image_number, x1, y1, x2, y2, score)
"""
boxes: List[Tuple[AnnotationRect, float]] = []
with open(filepath, "r") as f:
for line in f:
parts = line.strip().split()
if len(parts) != 6:
continue
img_id = parts[0]
x1, y1, x2, y2 = map(int, parts[1:5])
annotation_rect = AnnotationRect(x1, y1, x2, y2)
score = float(parts[5])
boxes.append((img_id, annotation_rect, score))
return boxes
def main():
boxes = read_boxes_from_file("mmp/a6/model_output.txt")
grouped = defaultdict(list)
for image_id, rect, score in boxes:
grouped[image_id].append((rect, score))
for image_id, rects_scores in grouped.items():
filtered_boxes = non_maximum_suppression(rects_scores, 0.3)
annotation_rects = [rect for rect, score in filtered_boxes if score > 0.5]
input_path = f".data/mmp-public-3.2/test/{image_id}.jpg"
output_path = f"mmp/a6/nms_output_{image_id}.png"
if not os.path.exists(input_path):
continue
draw_annotation_rects(
input_path,
annotation_rects,
rect_color=(255, 0, 0),
rect_width=2,
output_path=output_path,
)
if __name__ == "__main__":
main()

Binary file not shown.

After

Width:  |  Height:  |  Size: 359 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 231 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 232 KiB