adapts document

This commit is contained in:
franksim
2025-11-04 09:35:16 +01:00
parent 78bdb7155b
commit ef540f128e
3 changed files with 4 additions and 2 deletions

Binary file not shown.

View File

@@ -74,6 +74,8 @@
\hline Accuracy & 78.90 \% \\ \hline Accuracy & 78.90 \% \\
\hline \hline
\end{tabular} \end{tabular}
\\
The accuracy metric isnt ideal because its quite intuitive to classify whether an object appears once or more in an image. In this case, the model might not have guessed the correct number of objects (e.g., 3 instead of 2), but the result will still be interpreted as accurate. This also makes it more challenging to backpropagate. A better approach would be to output the actual number of objects (in this case, humans).
%------------------ END OF ASSIGNMENT ----------------------- %------------------ END OF ASSIGNMENT -----------------------

View File

@@ -15,11 +15,11 @@ def main():
train_epochs = 10 train_epochs = 10
model = MmpNet(num_classes=2).to(device=device) model = MmpNet(num_classes=2).to(device=device)
dataloader_train = get_dataloader( dataloader_train = get_dataloader(
path_to_data="/home/ubuntu/mmp_wise2526_franksim/.data/mmp-public-3.2", path_to_data=".data/mmp-public-3.2",
image_size=244, batch_size=32, num_workers=6, is_train=True image_size=244, batch_size=32, num_workers=6, is_train=True
) )
dataloader_eval = get_dataloader( dataloader_eval = get_dataloader(
path_to_data="/home/ubuntu/mmp_wise2526_franksim/.data/mmp-public-3.2", path_to_data=".data/mmp-public-3.2",
image_size=244, batch_size=32, num_workers=6, is_train=False image_size=244, batch_size=32, num_workers=6, is_train=False
) )
criterion, optimizer = get_criterion_optimizer(model=model) criterion, optimizer = get_criterion_optimizer(model=model)