adds solutions
This commit is contained in:
246
mmp/a5/main.py
246
mmp/a5/main.py
@@ -1,7 +1,16 @@
|
||||
import argparse
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import torch.nn as nn
|
||||
from torch.utils.data import DataLoader
|
||||
from torch import Tensor
|
||||
from tqdm import tqdm
|
||||
import datetime
|
||||
|
||||
from .model import MmpNet
|
||||
from ..a4.anchor_grid import get_anchor_grid
|
||||
from ..a4.dataset import get_dataloader
|
||||
from ..a2.main import get_criterion_optimizer
|
||||
|
||||
|
||||
def step(
|
||||
@@ -11,11 +20,19 @@ def step(
|
||||
img_batch: torch.Tensor,
|
||||
lbl_batch: torch.Tensor,
|
||||
) -> float:
|
||||
"""Performs one update step for the model
|
||||
model.train()
|
||||
optimizer.zero_grad()
|
||||
|
||||
@return: The loss for the specified batch. Return a float and not a PyTorch tensor
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
device = next(model.parameters()).device
|
||||
img_batch = img_batch.to(device)
|
||||
lbl_batch = lbl_batch.to(device)
|
||||
|
||||
outputs = model(img_batch)
|
||||
loss = criterion(outputs, lbl_batch)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
return loss.item()
|
||||
|
||||
|
||||
def get_random_sampling_mask(labels: torch.Tensor, neg_ratio: float) -> torch.Tensor:
|
||||
@@ -26,13 +43,226 @@ def get_random_sampling_mask(labels: torch.Tensor, neg_ratio: float) -> torch.Te
|
||||
Hint: after computing the mask, check if the neg_ratio is fulfilled.
|
||||
@return: A tensor with the same shape as labels
|
||||
"""
|
||||
assert labels.min() >= 0 and labels.max() <= 1 # remove this line if you want
|
||||
raise NotImplementedError()
|
||||
# Flatten for easier indexing
|
||||
labels_flat = labels.view(-1)
|
||||
pos_indices = (labels_flat == 1).nonzero(as_tuple=True)[0]
|
||||
neg_indices = (labels_flat == 0).nonzero(as_tuple=True)[0]
|
||||
|
||||
num_pos = pos_indices.numel()
|
||||
num_neg = neg_indices.numel()
|
||||
|
||||
num_neg_to_sample = min(int(neg_ratio * num_pos), num_neg)
|
||||
|
||||
perm = torch.randperm(num_neg, device=labels.device)
|
||||
sampled_neg_indices = neg_indices[perm[:num_neg_to_sample]]
|
||||
|
||||
mask_flat = torch.zeros_like(labels_flat, dtype=torch.long)
|
||||
mask_flat[pos_indices] = 1
|
||||
mask_flat[sampled_neg_indices] = 1
|
||||
|
||||
# Reshape to original shape
|
||||
mask = mask_flat.view_as(labels)
|
||||
return mask
|
||||
|
||||
|
||||
def get_detection_metrics(
|
||||
output: Tensor, labels: torch.Tensor, threshold: float
|
||||
) -> tuple[float, float, float]:
|
||||
"""
|
||||
Returns precision, recall, f1 for the positive (human) class.
|
||||
"""
|
||||
with torch.no_grad():
|
||||
probs = torch.softmax(output, dim=-1)[..., 1]
|
||||
|
||||
preds = probs >= threshold
|
||||
|
||||
TP = ((preds == 1) & (labels == 1)).sum().item()
|
||||
FP = ((preds == 1) & (labels == 0)).sum().item()
|
||||
FN = ((preds == 0) & (labels == 1)).sum().item()
|
||||
TN = ((preds == 0) & (labels == 0)).sum().item()
|
||||
|
||||
precision = TP / (TP + FP) if (TP + FP) > 0 else 0.0
|
||||
neg_precision = TN / (TN + FN) if (TN + FN) > 0 else 0.0
|
||||
recall = TP / (TP + FN) if (TP + FN) > 0 else 0.0
|
||||
neg_recall = TN / (TN + FP) if (TN + FP) > 0 else 0.0
|
||||
f1 = (
|
||||
2 * precision * recall / (precision + recall)
|
||||
if (precision + recall) > 0
|
||||
else 0.0
|
||||
)
|
||||
|
||||
return precision, recall, f1, neg_precision, neg_recall
|
||||
|
||||
|
||||
def evaluate(
|
||||
model: MmpNet,
|
||||
criterion,
|
||||
dataloader: DataLoader,
|
||||
) -> tuple[float, float, float, float]:
|
||||
device = next(model.parameters()).device
|
||||
model.eval()
|
||||
total_loss = 0.0
|
||||
total_samples = 0
|
||||
all_outputs = []
|
||||
all_labels = []
|
||||
with torch.no_grad():
|
||||
for img_batch, lbl_batch, _ in dataloader:
|
||||
img_batch = img_batch.to(device)
|
||||
lbl_batch = lbl_batch.to(device)
|
||||
|
||||
outputs = model(img_batch)
|
||||
loss = criterion(outputs, lbl_batch)
|
||||
batch_size = img_batch.size(0)
|
||||
total_loss += loss.item() * batch_size
|
||||
total_samples += batch_size
|
||||
|
||||
all_outputs.append(outputs.cpu())
|
||||
all_labels.append(lbl_batch.cpu())
|
||||
avg_loss = total_loss / total_samples if total_samples > 0 else 0.0
|
||||
if all_outputs and all_labels:
|
||||
outputs_cat = torch.cat(all_outputs)
|
||||
labels_cat = torch.cat(all_labels)
|
||||
precision, recall, f1, neg_precision, neg_recall = get_detection_metrics(
|
||||
outputs_cat, labels_cat, threshold=0.5
|
||||
)
|
||||
else:
|
||||
precision = recall = f1 = 0.0
|
||||
return avg_loss, precision, recall, f1, neg_precision, neg_recall
|
||||
|
||||
|
||||
def train(
|
||||
model: MmpNet,
|
||||
loader: DataLoader,
|
||||
criterion: nn.Module,
|
||||
optimizer: optim.Optimizer,
|
||||
):
|
||||
model.train()
|
||||
running_loss = 0.0
|
||||
total_samples = 0
|
||||
|
||||
progress_bar = tqdm(loader, desc="Training", unit="batch")
|
||||
|
||||
for img_batch, lbl_batch, _ in progress_bar:
|
||||
loss = step(
|
||||
model=model,
|
||||
criterion=criterion,
|
||||
optimizer=optimizer,
|
||||
img_batch=img_batch,
|
||||
lbl_batch=lbl_batch,
|
||||
)
|
||||
batch_size = img_batch.size(0)
|
||||
running_loss += loss * batch_size
|
||||
total_samples += batch_size
|
||||
progress_bar.set_postfix(
|
||||
{"loss": running_loss / total_samples if total_samples > 0 else 0.0}
|
||||
)
|
||||
|
||||
epoch_loss = running_loss / total_samples if total_samples > 0 else 0.0
|
||||
progress_bar.close()
|
||||
return epoch_loss
|
||||
|
||||
|
||||
class NegativeMiningCriterion(nn.Module):
|
||||
def __init__(self, neg_ratio=3.0, enable_negative_mining: bool = True):
|
||||
super().__init__()
|
||||
self.backbone = nn.CrossEntropyLoss(reduction="none")
|
||||
self.neg_ratio = neg_ratio
|
||||
self.enable_negative_mining = enable_negative_mining
|
||||
|
||||
def forward(self, outputs, labels):
|
||||
outputs_flat = outputs.view(-1, outputs.shape[-1])
|
||||
labels_flat = labels.view(-1).long()
|
||||
unfiltered = self.backbone(outputs_flat, labels_flat)
|
||||
assert unfiltered.shape == labels_flat.shape
|
||||
|
||||
if not self.enable_negative_mining:
|
||||
return unfiltered.mean()
|
||||
|
||||
mask = get_random_sampling_mask(labels_flat, self.neg_ratio)
|
||||
filtered_loss = unfiltered[mask == 1]
|
||||
return filtered_loss.mean()
|
||||
|
||||
|
||||
def main():
|
||||
"""Put your training code for exercises 5.2 and 5.3 here"""
|
||||
raise NotImplementedError()
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--tensorboard",
|
||||
nargs="?",
|
||||
const=True,
|
||||
default=False,
|
||||
help="Enable TensorBoard logging. If a label is provided, it will be used in the log directory name.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.tensorboard:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
||||
if isinstance(args.tensorboard, str):
|
||||
label = args.tensorboard
|
||||
log_dir = f"runs/a5_mmpnet_{label}_{timestamp}"
|
||||
else:
|
||||
log_dir = f"runs/a5_mmpnet_{timestamp}"
|
||||
writer = SummaryWriter(log_dir=log_dir)
|
||||
else:
|
||||
writer = None
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model = MmpNet(num_aspect_ratios=8, num_widths=8).to(device)
|
||||
|
||||
anchor_grid = get_anchor_grid(
|
||||
anchor_widths=[8, 16, 32, 64, 96, 128, 160, 192],
|
||||
aspect_ratios=[1 / 2, 2 / 3, 1, 4 / 3, 5 / 3, 2, 2.5, 3],
|
||||
num_rows=7,
|
||||
num_cols=7,
|
||||
scale_factor=32,
|
||||
)
|
||||
|
||||
dataloader_train = get_dataloader(
|
||||
path_to_data=".data/mmp-public-3.2/train",
|
||||
image_size=224,
|
||||
batch_size=32,
|
||||
num_workers=9,
|
||||
is_test=False,
|
||||
is_train=True,
|
||||
anchor_grid=anchor_grid,
|
||||
)
|
||||
dataloader_val = get_dataloader(
|
||||
path_to_data=".data/mmp-public-3.2/val",
|
||||
image_size=224,
|
||||
batch_size=32,
|
||||
num_workers=9,
|
||||
is_test=False,
|
||||
is_train=False,
|
||||
anchor_grid=anchor_grid,
|
||||
)
|
||||
_, optimizer = get_criterion_optimizer(model=model)
|
||||
criterion = NegativeMiningCriterion(enable_negative_mining=True)
|
||||
criterion_eval = NegativeMiningCriterion(enable_negative_mining=False)
|
||||
num_epochs = 7
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
train_loss = train(
|
||||
model=model,
|
||||
loader=dataloader_train,
|
||||
criterion=criterion,
|
||||
optimizer=optimizer,
|
||||
)
|
||||
avg_loss, precision, recall, f1, neg_precision, neg_recall = evaluate(
|
||||
model=model, criterion=criterion_eval, dataloader=dataloader_val
|
||||
)
|
||||
|
||||
if writer is not None:
|
||||
writer.add_scalar("Loss/train_epoch", train_loss, epoch)
|
||||
writer.add_scalar("Loss/eval_epoch", avg_loss, epoch)
|
||||
writer.add_scalar("Acc/precision", precision, epoch)
|
||||
writer.add_scalar("Acc/recall", recall, epoch)
|
||||
writer.add_scalar("Acc/neg_precision", neg_precision, epoch)
|
||||
writer.add_scalar("Acc/neg_recall", neg_recall, epoch)
|
||||
writer.add_scalar("Acc/f1", f1, epoch)
|
||||
|
||||
if writer is not None:
|
||||
writer.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
Reference in New Issue
Block a user