implements dataset

This commit is contained in:
franksim
2025-11-09 12:10:38 +01:00
parent bf7da1653e
commit c2b96a0c19
25 changed files with 152 additions and 5 deletions

BIN
mmp/a4/2242167_original.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 504 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 69 KiB

BIN
mmp/a4/2243763_original.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 159 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

BIN
mmp/a4/2244338_original.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 175 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

BIN
mmp/a4/2245478_original.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

BIN
mmp/a4/2247660_original.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 248 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

BIN
mmp/a4/2249754_original.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 328 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

BIN
mmp/a4/2251077_original.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 385 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

BIN
mmp/a4/2253265_original.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 892 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

BIN
mmp/a4/2256489_original.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 189 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

BIN
mmp/a4/2259929_original.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

BIN
mmp/a4/2263954_original.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 244 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

BIN
mmp/a4/2266873_original.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 394 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

View File

@@ -1,7 +1,17 @@
from typing import Tuple
import os
import re
from typing import Sequence, Tuple
import numpy as np
import torch
from torch.utils.data import DataLoader
from ..a3.annotation import read_groundtruth_file, AnnotationRect
from .label_grid import get_label_grid, draw_annotation_rects
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from .anchor_grid import get_anchor_grid
from PIL import Image
from torchvision.transforms import transforms
from itertools import islice
class MMP_Dataset(torch.utils.data.Dataset):
@@ -18,16 +28,59 @@ class MMP_Dataset(torch.utils.data.Dataset):
@param min_iou: The minimum IoU that is required for an overlap for the label grid.
@param is_test: Whether this is the test set (True) or the validation/training set (False)
"""
raise NotImplementedError()
self.image_size = image_size
self.images = []
self.anchor_grid = anchor_grid
self.min_iou = min_iou
self.is_test = is_test
img_pattern = re.compile(r"^(\d+)\.jpg$")
files = set(os.listdir(path_to_data))
for fname in files:
match = img_pattern.match(fname)
if match:
img_file = os.path.join(path_to_data, fname)
annotations = read_groundtruth_file(
os.path.join(path_to_data, f"{match.group(1)}.gt_data.txt")
)
self.images.append((img_file, annotations))
self.images.sort(
key=lambda x: int(re.match(r"(.*/)(\d+)(\.jpg)", x[0]).group(2))
)
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, int]:
"""
@return: 3-tuple of image tensor, label grid, and image (file-)number
"""
raise NotImplementedError()
img = Image.open(self.images[idx][0]).convert("RGB")
padding = self.__padding__(img)
transform = transforms.Compose(
[
transforms.Pad(padding, 0),
transforms.Resize((self.image_size, self.image_size)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
img_tensor = transform(img)
label_grid = get_label_grid(
anchor_grid=self.anchor_grid, gts=self.images[idx][1], min_iou=self.min_iou
)
img_id = re.match(r".*(\/)([0-9]+)(\.[^\/]*$)", self.images[idx][0]).group(2)
return (img_tensor, label_grid, int(img_id))
def __len__(self) -> int:
raise NotImplementedError()
return len(self.images)
def __padding__(self, img) -> Tuple[int, int, int, int]:
w, h = img.size
size = max(w, h)
right_pad = size - w
bottom_pad = size - h
return (0, 0, right_pad, bottom_pad)
def get_dataloader(
@@ -37,8 +90,23 @@ def get_dataloader(
num_workers: int,
anchor_grid: np.ndarray,
is_test: bool,
is_train: bool,
) -> DataLoader:
raise NotImplementedError()
dataset = MMP_Dataset(
path_to_data=path_to_data,
image_size=image_size,
is_test=is_test,
anchor_grid=anchor_grid,
min_iou=0.7,
)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=is_train,
num_workers=num_workers,
pin_memory=True,
)
return dataloader
def calculate_max_coverage(loader: DataLoader, min_iou: float) -> float:
@@ -48,3 +116,82 @@ def calculate_max_coverage(loader: DataLoader, min_iou: float) -> float:
@return: Ratio of how mamy ground truth boxes are covered by a label grid box. Must be a value between 0 and 1.
"""
raise NotImplementedError()
def print_img_tensor_with_annotations(
img: torch.Tensor, annotations: Sequence["AnnotationRect"], output_file: str
):
# Convert tensor to numpy, permute dimensions
img_np = img.permute(1, 2, 0).cpu().numpy()
img_np = img_np.astype(np.uint8)
fig, ax = plt.subplots(1)
ax.imshow(img_np)
for rect in annotations:
x1, y1, x2, y2 = rect.x1, rect.y1, rect.x2, rect.y2
w = x2 - x1
h = y2 - y1
patch = patches.Rectangle(
(x1, y1), w, h, linewidth=2, edgecolor="red", facecolor="none"
)
ax.add_patch(patch)
plt.axis("off")
plt.tight_layout(pad=0)
plt.savefig(output_file, bbox_inches="tight", pad_inches=0)
plt.close(fig)
def print_positive_boxes(
img_tensor: torch.Tensor,
label_grid: np.ndarray,
img_id: torch.Tensor,
anchor_grid: np.ndarray,
path_to_data: str,
):
annotations = [
AnnotationRect.fromarray(anchor_grid[idx])
for idx in np.ndindex(anchor_grid.shape[:-1])
if label_grid[idx]
]
print_img_tensor_with_annotations(
img_tensor,
annotations=annotations,
output_file=f"mmp/a4/{img_id}_transformed.png",
)
draw_annotation_rects(
annotations=annotations,
image=f"{os.path.join(path_to_data, f'{str(img_id.item()).zfill(8)}.jpg')}",
output_path=f"mmp/a4/{img_id}_original.png",
)
def main():
anchor_grid = get_anchor_grid(
anchor_widths=[16, 32, 64, 96, 128, 144, 150, 160, 192, 224, 256],
aspect_ratios=[1 / 3, 1 / 2, 3 / 5, 2 / 3, 3 / 4, 1, 4 / 3, 5 / 3, 2, 2.5, 3],
num_rows=32,
num_cols=32,
scale_factor=20,
)
dataloader = get_dataloader(
num_workers=6,
is_train=True,
is_test=False,
batch_size=8,
image_size=224,
path_to_data=".data/mmp-public-3.2/train",
anchor_grid=anchor_grid,
)
for img, label, img_id in islice(dataloader, 12):
print_positive_boxes(
img_tensor=img[5],
label_grid=label[5],
img_id=img_id[5],
anchor_grid=anchor_grid,
path_to_data=".data/mmp-public-3.2/train",
)
if __name__ == "__main__":
main()