formatting

This commit is contained in:
franksim
2025-11-07 11:20:08 +01:00
parent 8fc3559d6c
commit b159d76517
8 changed files with 119 additions and 82 deletions

View File

@@ -17,7 +17,7 @@ class MMP_Dataset(torch.utils.data.Dataset):
@param image_size: Desired image size that this dataset should return
"""
self.image_size = image_size
img_pattern = re.compile(r'^(\d+)\.jpg$')
img_pattern = re.compile(r"^(\d+)\.jpg$")
files = set(os.listdir(path_to_data))
self.images = []
@@ -25,12 +25,14 @@ class MMP_Dataset(torch.utils.data.Dataset):
match = img_pattern.match(fname)
if match:
img_file = os.path.join(path_to_data, fname)
annotations = read_groundtruth_file(os.path.join(
path_to_data, f"{match.group(1)}.gt_data.txt"))
annotations = read_groundtruth_file(
os.path.join(path_to_data, f"{match.group(1)}.gt_data.txt")
)
self.images.append((img_file, annotations))
self.images.sort(key=lambda x: int(
re.match(r"(.*/)(\d+)(\.jpg)", x[0]).group(2)))
self.images.sort(
key=lambda x: int(re.match(r"(.*/)(\d+)(\.jpg)", x[0]).group(2))
)
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, int]:
"""
@@ -38,15 +40,16 @@ class MMP_Dataset(torch.utils.data.Dataset):
"""
img = Image.open(self.images[idx][0]).convert("RGB")
padding = self.__padding__(img)
transform = transforms.Compose([
transforms.Pad(padding, 0),
transforms.Resize((self.image_size, self.image_size)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
transform = transforms.Compose(
[
transforms.Pad(padding, 0),
transforms.Resize((self.image_size, self.image_size)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
return (transform(img), 1 if len(self.images[idx][1]) > 1 else 0)
def __padding__(self, img) -> Tuple[int, int, int, int]:
@@ -61,16 +64,24 @@ class MMP_Dataset(torch.utils.data.Dataset):
def get_dataloader(
path_to_data: str, image_size: int, batch_size: int, num_workers: int, is_train: bool = True
path_to_data: str,
image_size: int,
batch_size: int,
num_workers: int,
is_train: bool = True,
) -> DataLoader:
"""Exercise 3.2d"""
path = os.path.join(path_to_data, "train") if is_train else os.path.join(
path_to_data, "val")
path = (
os.path.join(path_to_data, "train")
if is_train
else os.path.join(path_to_data, "val")
)
dataset = MMP_Dataset(path_to_data=path, image_size=image_size)
dataloader = DataLoader(
dataset, batch_size=batch_size,
dataset,
batch_size=batch_size,
shuffle=is_train,
num_workers=num_workers,
pin_memory=True
pin_memory=True,
)
return dataloader