adds nms and eval
This commit is contained in:
@@ -1,6 +1,9 @@
|
||||
import os
|
||||
from typing import List, Sequence, Tuple
|
||||
|
||||
from ..a3.annotation import AnnotationRect
|
||||
from ..a4.label_grid import iou, draw_annotation_rects
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
def non_maximum_suppression(
|
||||
@@ -12,4 +15,68 @@ def non_maximum_suppression(
|
||||
|
||||
@return: A list of tuples of the remaining boxes after NMS together with their scores
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
if not boxes_scores:
|
||||
return []
|
||||
|
||||
# Sort the boxes by score in descending order
|
||||
boxes_scores_sorted = sorted(boxes_scores, key=lambda bs: bs[1], reverse=True)
|
||||
result = []
|
||||
while boxes_scores_sorted:
|
||||
# Select the box with highest score and remove it from the list
|
||||
curr_box, curr_score = boxes_scores_sorted.pop(0)
|
||||
result.append((curr_box, curr_score))
|
||||
# Remove boxes with IoU > threshold
|
||||
new_boxes = []
|
||||
for box, score in boxes_scores_sorted:
|
||||
if iou(curr_box, box) <= threshold:
|
||||
new_boxes.append((box, score))
|
||||
boxes_scores_sorted = new_boxes
|
||||
return result
|
||||
|
||||
|
||||
def read_boxes_from_file(filepath: str) -> List[Tuple[str, AnnotationRect, float]]:
|
||||
"""
|
||||
Reads a file containing bounding boxes and scores in the format:
|
||||
{image_number} {x1} {y1} {x2} {y2} {score}
|
||||
Returns a list of tuples: (image_number, x1, y1, x2, y2, score)
|
||||
"""
|
||||
boxes: List[Tuple[AnnotationRect, float]] = []
|
||||
with open(filepath, "r") as f:
|
||||
for line in f:
|
||||
parts = line.strip().split()
|
||||
if len(parts) != 6:
|
||||
continue
|
||||
img_id = parts[0]
|
||||
x1, y1, x2, y2 = map(int, parts[1:5])
|
||||
annotation_rect = AnnotationRect(x1, y1, x2, y2)
|
||||
score = float(parts[5])
|
||||
boxes.append((img_id, annotation_rect, score))
|
||||
return boxes
|
||||
|
||||
|
||||
def main():
|
||||
boxes = read_boxes_from_file("mmp/a6/model_output.txt")
|
||||
|
||||
grouped = defaultdict(list)
|
||||
for image_id, rect, score in boxes:
|
||||
grouped[image_id].append((rect, score))
|
||||
|
||||
for image_id, rects_scores in grouped.items():
|
||||
filtered_boxes = non_maximum_suppression(rects_scores, 0.3)
|
||||
annotation_rects = [rect for rect, score in filtered_boxes if score > 0.5]
|
||||
input_path = f".data/mmp-public-3.2/test/{image_id}.jpg"
|
||||
output_path = f"mmp/a6/nms_output_{image_id}.png"
|
||||
if not os.path.exists(input_path):
|
||||
continue
|
||||
|
||||
draw_annotation_rects(
|
||||
input_path,
|
||||
annotation_rects,
|
||||
rect_color=(255, 0, 0),
|
||||
rect_width=2,
|
||||
output_path=output_path,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user