adds nms and eval
This commit is contained in:
127
mmp/a6/main.py
127
mmp/a6/main.py
@@ -1,25 +1,144 @@
|
||||
from typing import List, Tuple
|
||||
import torch
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
import os
|
||||
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from mmp.a6.evallib import calculate_ap_pr
|
||||
from ..a4.label_grid import iou
|
||||
|
||||
from ..a5.model import MmpNet
|
||||
from ..a3.annotation import AnnotationRect
|
||||
from ..a3.annotation import AnnotationRect, read_groundtruth_file
|
||||
|
||||
from .nms import non_maximum_suppression
|
||||
|
||||
|
||||
def batch_inference(
|
||||
model: MmpNet, images: torch.Tensor, device: torch.device, anchor_grid: np.ndarray
|
||||
) -> List[List[Tuple[AnnotationRect, float]]]:
|
||||
raise NotImplementedError()
|
||||
score_thresh = 0.5
|
||||
nms_thresh = 0.3
|
||||
|
||||
model = model.to(device)
|
||||
model.eval()
|
||||
images = images.to(device)
|
||||
anchor_grid = anchor_grid # shape [W, R, h, w, 4]
|
||||
|
||||
results = []
|
||||
with torch.no_grad():
|
||||
outputs = model(images) # (B, W, R, h, w, 2)
|
||||
probs = torch.softmax(outputs, dim=-1)[..., 1] # (B, W, R, h, w)
|
||||
probs_np = probs.cpu().numpy()
|
||||
|
||||
batch_size = outputs.shape[0]
|
||||
for b in range(batch_size):
|
||||
detections = []
|
||||
for idx in np.ndindex(anchor_grid.shape[:-1]):
|
||||
score = probs_np[b][idx]
|
||||
# if score >= score_thresh:
|
||||
box = anchor_grid[idx]
|
||||
rect = AnnotationRect.fromarray(box)
|
||||
detections.append((rect, float(score)))
|
||||
detections_nms = non_maximum_suppression(detections, nms_thresh)
|
||||
results.append(detections_nms)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def evaluate() -> float: # feel free to change the arguments
|
||||
def evaluate(
|
||||
model: MmpNet, loader: DataLoader, device: torch.device, anchor_grid: np.ndarray
|
||||
) -> float:
|
||||
"""Evaluates a specified model on the whole validation dataset.
|
||||
|
||||
@return: AP for the validation set as a float.
|
||||
|
||||
You decide which arguments this function should receive
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
path_to_data = ".data/mmp-public-3.2/train"
|
||||
|
||||
progress_bar = tqdm(loader, desc="Evaluation", unit="batch")
|
||||
image_count = 0
|
||||
ap_total = 0
|
||||
for img_batch, _, id_batch in progress_bar:
|
||||
inference = batch_inference(
|
||||
anchor_grid=anchor_grid, device=device, images=img_batch, model=model
|
||||
)
|
||||
gts = get_gts_for_batch(id_batch=id_batch, gt_base_path=path_to_data)
|
||||
|
||||
dict_detections = {
|
||||
img_id.item(): inference[idx] for idx, img_id in enumerate(id_batch)
|
||||
}
|
||||
dict_gt = {img_id.item(): gts[idx] for idx, img_id in enumerate(id_batch)}
|
||||
average_prevision, precision, recall = calculate_ap_pr(dict_detections, dict_gt)
|
||||
ap_total = (ap_total * image_count + average_prevision) / (
|
||||
image_count + id_batch.shape[0]
|
||||
)
|
||||
image_count += id_batch.shape[0]
|
||||
|
||||
progress_bar.set_postfix(
|
||||
{
|
||||
"ap": ap_total,
|
||||
}
|
||||
)
|
||||
|
||||
return ap_total
|
||||
|
||||
|
||||
def get_gts_for_batch(
|
||||
id_batch: torch.Tensor, gt_base_path: str
|
||||
) -> List[List[AnnotationRect]]:
|
||||
return [
|
||||
read_groundtruth_file(
|
||||
os.path.join(gt_base_path, f"{str(img_id.item()).zfill(8)}.gt_data.txt")
|
||||
)
|
||||
for img_id in id_batch
|
||||
]
|
||||
|
||||
|
||||
def calc_tp_fp_fn(
|
||||
detections: List[Tuple[AnnotationRect, float]],
|
||||
gts: List[AnnotationRect],
|
||||
iou_threshold: float = 0.5,
|
||||
confidence_threshhold: float = 0.5,
|
||||
) -> tuple[int, int, int]:
|
||||
"""
|
||||
Calculates precision and recall for object detection results on a single image.
|
||||
|
||||
Args:
|
||||
detections: List of (AnnotationRect, confidence) tuples representing predicted boxes and scores. Should be sorted by descending confidence.
|
||||
gts: List of AnnotationRect for ground truth.
|
||||
iou_threshold: Minimum IoU to consider a detection a true positive.
|
||||
confidence_threshhold: Minimum confidence required to include a detection.
|
||||
Returns:
|
||||
num_tp: Number of true positives (int).
|
||||
num_fp: Number of false positives (int).
|
||||
num_fn: Number of false negatives (int).
|
||||
"""
|
||||
detections = [det for det in detections if det[1] >= confidence_threshhold]
|
||||
detections.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
matches = set()
|
||||
fp = 0
|
||||
tp = 0
|
||||
|
||||
for det_rect, _ in detections:
|
||||
iou_map = [iou(det_rect, gt_rect) for gt_rect in gts]
|
||||
if len(iou_map) == 0:
|
||||
fp += 1
|
||||
continue
|
||||
max_idx = np.argmax(iou_map)
|
||||
if max_idx in matches or iou_map[max_idx] < iou_threshold:
|
||||
fp += 1
|
||||
continue
|
||||
matches.add(max_idx)
|
||||
tp += 1
|
||||
|
||||
fn = len(gts) - len(matches)
|
||||
|
||||
return tp, fp, fn
|
||||
|
||||
|
||||
def evaluate_test(): # feel free to change the arguments
|
||||
|
||||
Reference in New Issue
Block a user