adds nms and eval

This commit is contained in:
franksim
2025-12-02 11:04:47 +01:00
parent 3b6a588719
commit a6f70005f2
9 changed files with 428 additions and 985 deletions

View File

@@ -3,7 +3,6 @@ import torch
import torch.optim as optim
import torch.nn as nn
from torch.utils.data import DataLoader
from torch import Tensor
from tqdm import tqdm
import datetime
@@ -11,6 +10,7 @@ from .model import MmpNet
from ..a4.anchor_grid import get_anchor_grid
from ..a4.dataset import get_dataloader
from ..a2.main import get_criterion_optimizer
from ..a6.main import evaluate as evaluate_v2
def step(
@@ -65,44 +65,11 @@ def get_random_sampling_mask(labels: torch.Tensor, neg_ratio: float) -> torch.Te
return mask
def get_detection_metrics(
output: Tensor, labels: torch.Tensor, threshold: float
) -> tuple[float, float, float, float]:
"""
Returns precision, recall, f1 for the positive (human) class, and overall accuracy.
"""
with torch.no_grad():
probs = torch.softmax(output, dim=-1)[..., 1]
preds = probs >= threshold
TP = ((preds == 1) & (labels == 1)).sum().item()
FP = ((preds == 1) & (labels == 0)).sum().item()
FN = ((preds == 0) & (labels == 1)).sum().item()
TN = ((preds == 0) & (labels == 0)).sum().item()
precision = TP / (TP + FP) if (TP + FP) > 0 else 0.0
recall = TP / (TP + FN) if (TP + FN) > 0 else 0.0
f1 = (
2 * precision * recall / (precision + recall)
if (precision + recall) > 0
else 0.0
)
accuracy = (TP + TN) / (TP + TN + FP + FN) if (TP + TN + FP + FN) > 0 else 0.0
return (
precision,
recall,
f1,
accuracy,
)
def evaluate(
model: MmpNet,
criterion,
dataloader: DataLoader,
) -> tuple[float, float, float, float]:
) -> float:
device = next(model.parameters()).device
model.eval()
total_loss = 0.0
@@ -123,15 +90,7 @@ def evaluate(
all_outputs.append(outputs.cpu())
all_labels.append(lbl_batch.cpu())
avg_loss = total_loss / total_samples if total_samples > 0 else 0.0
if all_outputs and all_labels:
outputs_cat = torch.cat(all_outputs)
labels_cat = torch.cat(all_labels)
precision, recall, f1, acc = get_detection_metrics(
outputs_cat, labels_cat, threshold=0.5
)
else:
precision = recall = f1 = 0.0
return avg_loss, precision, recall, f1, acc
return avg_loss
def train(
@@ -243,7 +202,7 @@ def main():
_, optimizer = get_criterion_optimizer(model=model)
criterion = NegativeMiningCriterion(enable_negative_mining=True)
criterion_eval = NegativeMiningCriterion(enable_negative_mining=False)
num_epochs = 10
num_epochs = 5
for epoch in range(num_epochs):
train_loss = train(
@@ -252,17 +211,16 @@ def main():
criterion=criterion,
optimizer=optimizer,
)
avg_loss, precision, recall, f1, acc = evaluate(
avg_loss = evaluate(
model=model, criterion=criterion_eval, dataloader=dataloader_val
)
_ = evaluate_v2(
model=model, device=device, anchor_grid=anchor_grid, loader=dataloader_train
)
if writer is not None:
writer.add_scalar("Loss/train_epoch", train_loss, epoch)
writer.add_scalar("Loss/eval_epoch", avg_loss, epoch)
writer.add_scalar("Acc/precision", precision, epoch)
writer.add_scalar("Acc/recall", recall, epoch)
writer.add_scalar("Acc/acc", acc, epoch)
writer.add_scalar("Acc/f1", f1, epoch)
if writer is not None:
writer.close()