assignment-a1: adds different batches for different transforms
This commit is contained in:
@@ -2,7 +2,7 @@ from typing import Sequence
|
||||
import torch
|
||||
import torchvision
|
||||
from torchvision.transforms import functional as F
|
||||
from torchvision import transforms, models
|
||||
from torchvision import models, transforms
|
||||
from PIL import Image
|
||||
|
||||
|
||||
@@ -14,7 +14,7 @@ def pad_to_square(img):
|
||||
return F.pad(img, padding, fill=0, padding_mode='constant')
|
||||
|
||||
|
||||
def build_batch(paths: Sequence[str], transform=None) -> torch.Tensor:
|
||||
def build_batch(paths: Sequence[str], size=(224, 224), additional_transforms=[]) -> torch.Tensor:
|
||||
"""Exercise 1.1
|
||||
|
||||
@param paths: A sequence (e.g. list) of strings, each specifying the location of an image file.
|
||||
@@ -23,12 +23,15 @@ def build_batch(paths: Sequence[str], transform=None) -> torch.Tensor:
|
||||
"""
|
||||
preprocess = transforms.Compose([
|
||||
transforms.Lambda(pad_to_square),
|
||||
transforms.Resize((224, 224)),
|
||||
transforms.ToTensor(),
|
||||
transforms.Resize(size)]
|
||||
+ additional_transforms
|
||||
+
|
||||
[transforms.ToTensor(),
|
||||
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
||||
std=[0.229, 0.224, 0.225]),
|
||||
])
|
||||
imgs = []
|
||||
|
||||
for path in paths:
|
||||
img = Image.open(path).convert('RGB')
|
||||
img = preprocess(img)
|
||||
@@ -47,6 +50,21 @@ def get_model() -> torch.nn.Module:
|
||||
return model
|
||||
|
||||
|
||||
def forward_pass(paths, batch, model):
|
||||
with torch.no_grad():
|
||||
outputs = model(batch)
|
||||
|
||||
max_scores, preds = outputs.max(dim=1)
|
||||
|
||||
class_names = torchvision.models.ResNet18_Weights.DEFAULT.meta["categories"]
|
||||
|
||||
for i, (p, s) in enumerate(zip(preds, max_scores)):
|
||||
print(f"Image: {paths[i]}")
|
||||
print(f"Model output score: {s.item():.4f}")
|
||||
print(f"Predicted class: {class_names[p.item()]}")
|
||||
print()
|
||||
|
||||
|
||||
def main():
|
||||
"""Exercise 1.3
|
||||
|
||||
@@ -62,22 +80,19 @@ def main():
|
||||
"./images/shoehorn.jpg",
|
||||
"./images/zoo.jpg",
|
||||
]
|
||||
batch = build_batch(paths)
|
||||
batch_a = build_batch(paths)
|
||||
model = get_model()
|
||||
print("Batch A:")
|
||||
forward_pass(paths, batch_a, model)
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(batch)
|
||||
|
||||
max_scores, preds = outputs.max(dim=1)
|
||||
|
||||
class_names = torchvision.models.ResNet18_Weights.DEFAULT.meta["categories"]
|
||||
|
||||
for i, (p, s) in enumerate(zip(preds, max_scores)):
|
||||
print(f"Image: {paths[i]}")
|
||||
print(f" Model output score: {s.item():.4f}")
|
||||
print(f" Predicted class: {class_names[p.item()]}")
|
||||
print()
|
||||
print("Batch B:")
|
||||
batch_b = build_batch(paths, (400, 400))
|
||||
forward_pass(paths, batch_b, model)
|
||||
|
||||
print("Batch C:")
|
||||
batch_c = build_batch(paths, additional_transforms=[
|
||||
transforms.RandomVerticalFlip(1)])
|
||||
forward_pass(paths, batch_c, model)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user