assignment-a3: adds code

This commit is contained in:
franksim
2025-10-28 16:03:53 +00:00
parent 0f946c5518
commit 5696de6e04
3 changed files with 98 additions and 11 deletions

View File

@@ -1,6 +1,11 @@
import os
import re
from PIL import Image
from typing import Tuple
import torch
from torch.utils.data import DataLoader
from a3.annotation import read_groundtruth_file
from torchvision import transforms
class MMP_Dataset(torch.utils.data.Dataset):
@@ -11,19 +16,61 @@ class MMP_Dataset(torch.utils.data.Dataset):
@param path_to_data: Path to the folder that contains the images and annotation files, e.g. dataset_mmp/train
@param image_size: Desired image size that this dataset should return
"""
raise NotImplementedError()
self.image_size = image_size
img_pattern = re.compile(r'^(\d+)\.jpg$')
files = set(os.listdir(path_to_data))
self.images = []
for fname in files:
match = img_pattern.match(fname)
if match:
img_file = os.path.join(path_to_data, fname)
annotations = read_groundtruth_file(os.path.join(
path_to_data, f"{match.group(1)}.gt_data.txt"))
self.images.append((img_file, annotations))
self.images.sort(key=lambda x: int(
re.match(r"(.*/)(\d+)(\.jpg)", x[0]).group(2)))
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, int]:
"""
@return: Tuple of image tensor and label. The label is 0 if there is one person and 1 if there a multiple people.
"""
raise NotImplementedError()
img = Image.open(self.images[idx][0]).convert("RGB")
padding = self.__padding__(img)
transform = transforms.Compose([
transforms.Pad(padding, 0),
transforms.Resize((self.image_size, self.image_size)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
return (transform(img), 1 if len(self.images[idx][1]) > 1 else 0)
def __padding__(self, img) -> Tuple[int, int, int, int]:
w, h = img.size
size = max(w, h)
right_pad = size - w
bottom_pad = size - h
return (0, 0, right_pad, bottom_pad)
def __len__(self) -> int:
raise NotImplementedError()
return len(self.images)
def get_dataloader(
path_to_data: str, image_size: int, batch_size: int, num_workers: int, is_train: bool = True
) -> DataLoader:
"""Exercise 3.2d"""
path = os.path.join(path_to_data, "train") if is_train else os.path.join(
path_to_data, "val")
dataset = MMP_Dataset(path_to_data=path, image_size=image_size)
dataloader = DataLoader(
dataset, batch_size=batch_size,
shuffle=is_train,
num_workers=num_workers,
pin_memory=True
)
return dataloader