assignment-a1: adds forward pass
This commit is contained in:
@@ -1,5 +1,6 @@
|
||||
from typing import Sequence
|
||||
import torch
|
||||
import torchvision
|
||||
from torchvision.transforms import functional as F
|
||||
from torchvision import transforms, models
|
||||
from PIL import Image
|
||||
@@ -51,7 +52,31 @@ def main():
|
||||
|
||||
Put all your code for exercise 1.3 here.
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
paths = [
|
||||
"./images/golden retriever.jpg",
|
||||
"./images/koala.jpg",
|
||||
"./images/pacifier.jpg",
|
||||
"./images/rubber duck sculpture.jpg",
|
||||
"./images/rubber ducks.jpg",
|
||||
"./images/shoehorn.jpg",
|
||||
"./images/zoo.jpg",
|
||||
]
|
||||
batch = build_batch(paths)
|
||||
model = get_model()
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(batch)
|
||||
|
||||
max_scores, preds = outputs.max(dim=1)
|
||||
|
||||
class_names = torchvision.models.ResNet18_Weights.DEFAULT.meta["categories"]
|
||||
|
||||
for i, (p, s) in enumerate(zip(preds, max_scores)):
|
||||
print(f"Image: {paths[i]}")
|
||||
print(f" Model output score: {s.item():.4f}")
|
||||
print(f" Predicted class: {class_names[p.item()]}")
|
||||
print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
Reference in New Issue
Block a user