Merge branch 'assignment-a2' into 'main'

Assignment a2

See merge request mmc-mmp/mmp_wise2526_franksim!2
This commit is contained in:
franksim
2025-10-23 15:16:59 +02:00
3 changed files with 183 additions and 7 deletions

BIN
mmp/a2/document.pdf Normal file

Binary file not shown.

69
mmp/a2/document.tex Normal file
View File

@@ -0,0 +1,69 @@
\documentclass[11pt,a4paper]{article}
% Language and encoding settings
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
% Page formatting
\usepackage[left=1in, right=1in, top=1in, bottom=1in]{geometry}
\usepackage{setspace}
\onehalfspacing
% Header/Footer
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhf{} % clear all header and footer fields
\fancyhead[L]{\textbf{\course}}
\fancyhead[C]{Assignment \assignmentnumber}
\fancyhead[R]{\name}
\fancyfoot[C]{\thepage}
% Other packages
\usepackage{enumitem}
% Custom commands for easy detail insertion
\newcommand{\assignmentnumber}{02} % <-- CHANGE Assignment Number
\newcommand{\name}{Simon Franken} % <-- CHANGE YOUR NAME
\newcommand{\course}{Multimedia Project WiSe 2526} % <-- CHANGE COURSE NAME
\newcommand{\duedate}{2025-10-29} % <-- CHANGE DUE DATE
% Title formatting
\usepackage{titling}
\pretitle{
\vspace*{2cm}
\begin{center}
\LARGE\bfseries
}
\posttitle{\par\end{center}\vspace{1cm}}
\begin{document}
\title{Assignment \assignmentnumber}
\author{\name}
\date{\duedate}
\maketitle
\begin{center}
\textbf{Course:} \course
\end{center}
\vspace{0.5cm}
%------------------ START OF ASSIGNMENT -----------------------
% Write your solutions below
\section*{Exercise 2.3 Training}
\begin{tabular}{|c||c|}
\hline Batch size & 64 \\
\hline Training epoches & 10 \\
\hline Loss & 0.6720 \\
\hline Accuracy & 77.78 \% \\
\hline
\end{tabular}
%------------------ END OF ASSIGNMENT -----------------------
\end{document}

View File

@@ -3,6 +3,16 @@ import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import models, datasets, transforms
from torchvision.models import MobileNet_V2_Weights
import logging
logging.basicConfig(
level=logging.INFO,
format='[%(asctime)s] %(levelname)s: %(message)s',
datefmt='%H:%M:%S'
)
logger = logging.getLogger(__name__)
# these are the labels from the Cifar10 dataset:
CLASSES = (
@@ -23,10 +33,20 @@ class MmpNet(nn.Module):
"""Exercise 2.1"""
def __init__(self, num_classes: int):
raise NotImplementedError()
super().__init__()
self.mobilenet = models.mobilenet_v2(
weights=MobileNet_V2_Weights.DEFAULT)
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(self.mobilenet.last_channel, num_classes),
)
def forward(self, x: torch.Tensor):
raise NotImplementedError()
x = self.mobilenet.features(x)
x = nn.functional.adaptive_avg_pool2d(x, (1, 1))
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
def get_dataloader(
@@ -39,7 +59,26 @@ def get_dataloader(
@param batch_size: Batch size for the data loader
@param num_workers: Number of workers for the data loader
"""
raise NotImplementedError()
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=[0.4914, 0.4822, 0.4465],
std=[0.2023, 0.1994, 0.2010]
),
])
dataset = datasets.CIFAR10(
root=data_root,
train=is_train,
download=True,
transform=transform
)
dataloader = DataLoader(
dataset, batch_size=batch_size,
shuffle=is_train,
num_workers=num_workers,
pin_memory=True
)
return dataloader
def get_criterion_optimizer(model: nn.Module) -> Tuple[nn.Module, optim.Optimizer]:
@@ -48,7 +87,17 @@ def get_criterion_optimizer(model: nn.Module) -> Tuple[nn.Module, optim.Optimize
@param model: The model that is being trained.
@return: Returns a tuple of the criterion and the optimizer.
"""
raise NotImplementedError()
error_function = nn.CrossEntropyLoss()
epsilon = 0.004
optimizer = torch.optim.SGD(model.parameters(), lr=epsilon)
return (error_function, optimizer)
def log_epoch_progress(epoch: int, total_epochs: int, phase: str):
if phase == "start":
logger.info(f"Epoch {epoch + 1}/{total_epochs} started.")
elif phase == "end":
logger.info(f"Epoch {epoch + 1}/{total_epochs} completed.")
def train_epoch(
@@ -66,7 +115,29 @@ def train_epoch(
@param optimizer: Executes the update step
@param device: The device where the epoch should run on
"""
raise NotImplementedError()
model.train()
running_loss = 0.0
log_interval = max(len(loader) // 5, 1)
for batch_idx, (inputs, labels) in enumerate(loader, 1):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
if batch_idx % log_interval == 0 or batch_idx == len(loader):
avg_batch_loss = running_loss / (batch_idx * loader.batch_size)
logger.info(
f" [Batch {batch_idx}/{len(loader)}] Train Loss: {avg_batch_loss:.4f}")
epoch_loss = running_loss / len(loader.dataset)
logger.info(f" ---> Train Loss (Epoch): {epoch_loss:.4f}")
return epoch_loss
def eval_epoch(model: nn.Module, loader: DataLoader, device: torch.device) -> float:
@@ -77,12 +148,48 @@ def eval_epoch(model: nn.Module, loader: DataLoader, device: torch.device) -> fl
@param device: The device where the epoch should run on
@return: Returns the accuracy over the full validation dataset as a float."""
raise NotImplementedError()
model.eval()
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = outputs.max(1)
correct += (preds == labels).sum().item()
total += labels.size(0)
accuracy = correct / total if total > 0 else 0.0
logger.info(f" ---> Eval Accuracy: {accuracy * 100:.2f}%")
return float(accuracy)
def main():
"""Exercise 2.3d"""
raise NotImplementedError()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_epochs = 10
model = MmpNet(num_classes=10).to(device=device)
dataloader_train = get_dataloader(True, "../../.data", 32, 6)
dataloader_eval = get_dataloader(False, "../../.data", 32, 6)
criterion, optimizer = get_criterion_optimizer(model=model)
for epoche in range(train_epochs):
log_epoch_progress(epoche, train_epochs, "start")
train_epoch(
model=model,
loader=dataloader_train,
optimizer=optimizer,
device=device,
criterion=criterion,
)
eval_epoch(
model=model,
loader=dataloader_eval,
device=device
)
log_epoch_progress(epoche, train_epochs, "end")
if __name__ == "__main__":