2025-10-28 16:03:53 +00:00
|
|
|
import torch
|
2025-10-31 13:17:46 +00:00
|
|
|
import argparse
|
|
|
|
|
from a2.main import MmpNet, get_criterion_optimizer, train_epoch, eval_epoch
|
2025-10-28 16:03:53 +00:00
|
|
|
from a3.dataset import get_dataloader
|
|
|
|
|
|
|
|
|
|
|
2025-10-13 14:48:00 +02:00
|
|
|
def main():
|
|
|
|
|
"""Put your code for Exercise 3.3 in here"""
|
2025-10-31 13:17:46 +00:00
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
|
parser.add_argument('--tensorboard', action='store_true',
|
|
|
|
|
help='Enable TensorBoard logging')
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
2025-10-28 16:03:53 +00:00
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
train_epochs = 10
|
2025-10-31 13:17:46 +00:00
|
|
|
model = MmpNet(num_classes=2).to(device=device)
|
|
|
|
|
dataloader_train = get_dataloader(
|
|
|
|
|
path_to_data="/home/ubuntu/mmp_wise2526_franksim/.data/mmp-public-3.2",
|
|
|
|
|
image_size=244, batch_size=32, num_workers=6, is_train=True
|
|
|
|
|
)
|
|
|
|
|
dataloader_eval = get_dataloader(
|
|
|
|
|
path_to_data="/home/ubuntu/mmp_wise2526_franksim/.data/mmp-public-3.2",
|
|
|
|
|
image_size=244, batch_size=32, num_workers=6, is_train=False
|
|
|
|
|
)
|
2025-10-28 16:03:53 +00:00
|
|
|
criterion, optimizer = get_criterion_optimizer(model=model)
|
|
|
|
|
|
2025-10-31 13:17:46 +00:00
|
|
|
writer = None
|
|
|
|
|
if args.tensorboard:
|
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
|
writer = SummaryWriter(log_dir="runs/a3_mmpnet")
|
|
|
|
|
|
|
|
|
|
for epoch in range(train_epochs):
|
|
|
|
|
train_loss = train_epoch(
|
2025-10-28 16:03:53 +00:00
|
|
|
model=model,
|
|
|
|
|
loader=dataloader_train,
|
|
|
|
|
optimizer=optimizer,
|
|
|
|
|
device=device,
|
|
|
|
|
criterion=criterion,
|
|
|
|
|
)
|
2025-10-31 13:17:46 +00:00
|
|
|
val_acc = eval_epoch(
|
2025-10-28 16:03:53 +00:00
|
|
|
model=model,
|
|
|
|
|
loader=dataloader_eval,
|
|
|
|
|
device=device
|
|
|
|
|
)
|
2025-10-31 13:17:46 +00:00
|
|
|
|
|
|
|
|
print(
|
|
|
|
|
f"Epoch [{epoch+1}/{train_epochs}] - Train Loss: {train_loss:.4f} - Val Acc: {val_acc:.4f}")
|
|
|
|
|
|
|
|
|
|
if writer is not None:
|
|
|
|
|
writer.add_scalar("Loss/train", train_loss, epoch)
|
|
|
|
|
writer.add_scalar("Accuracy/val", val_acc, epoch)
|
|
|
|
|
|
|
|
|
|
if writer is not None:
|
|
|
|
|
writer.close()
|
2025-10-13 14:48:00 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
main()
|