2025-10-13 12:45:39 +00:00
|
|
|
import os
|
|
|
|
|
from PIL import Image
|
|
|
|
|
import torch
|
|
|
|
|
from torchvision import transforms, datasets, models
|
|
|
|
|
from torchvision.transforms import functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def pad_to_square(img):
|
|
|
|
|
w, h = img.size
|
|
|
|
|
max_wh = max(w, h)
|
|
|
|
|
pad = ((max_wh - w) // 2, (max_wh - h) // 2)
|
|
|
|
|
padding = (pad[0], pad[1], max_wh - w - pad[0], max_wh - h - pad[1])
|
|
|
|
|
return F.pad(img, padding, fill=0, padding_mode='constant')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build_batch(paths, size=224):
|
|
|
|
|
preprocess = transforms.Compose([
|
|
|
|
|
transforms.Lambda(pad_to_square),
|
|
|
|
|
transforms.Resize((size, size)),
|
|
|
|
|
transforms.ToTensor(),
|
|
|
|
|
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
|
|
|
|
std=[0.229, 0.224, 0.225]),
|
|
|
|
|
])
|
|
|
|
|
imgs = []
|
|
|
|
|
for path in paths:
|
|
|
|
|
img = Image.open(path).convert('RGB')
|
|
|
|
|
img = preprocess(img)
|
|
|
|
|
imgs.append(img)
|
|
|
|
|
batch = torch.stack(imgs)
|
|
|
|
|
return batch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_model():
|
|
|
|
|
model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)
|
|
|
|
|
return model
|