Files
mmp_wise2526_franksim/mmp/a4/dataset.py

235 lines
7.4 KiB
Python
Raw Normal View History

2025-11-09 12:10:38 +01:00
import os
import re
from typing import Sequence, Tuple
2025-10-13 14:48:00 +02:00
import numpy as np
import torch
from torch.utils.data import DataLoader
2025-11-09 12:10:38 +01:00
from ..a3.annotation import read_groundtruth_file, AnnotationRect
2025-11-09 17:49:50 +01:00
from .label_grid import get_label_grid, iou
2025-11-09 12:10:38 +01:00
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from .anchor_grid import get_anchor_grid
from PIL import Image
from torchvision.transforms import transforms
from itertools import islice
2025-10-13 14:48:00 +02:00
class MMP_Dataset(torch.utils.data.Dataset):
def __init__(
self,
path_to_data: str,
image_size: int,
anchor_grid: np.ndarray,
min_iou: float,
is_test: bool,
):
"""
@param anchor_grid: The anchor grid to be used for every image
@param min_iou: The minimum IoU that is required for an overlap for the label grid.
@param is_test: Whether this is the test set (True) or the validation/training set (False)
"""
2025-11-09 12:10:38 +01:00
self.image_size = image_size
2025-11-09 13:01:46 +01:00
self.images: Sequence[Tuple[str, Sequence[AnnotationRect]]] = []
2025-11-09 12:10:38 +01:00
self.anchor_grid = anchor_grid
self.min_iou = min_iou
self.is_test = is_test
2025-11-09 17:49:50 +01:00
self.path_to_data = path_to_data
2025-11-09 12:10:38 +01:00
img_pattern = re.compile(r"^(\d+)\.jpg$")
files = set(os.listdir(path_to_data))
for fname in files:
match = img_pattern.match(fname)
if match:
img_file = os.path.join(path_to_data, fname)
2025-11-09 12:33:02 +01:00
if is_test:
self.images.append((img_file, None))
else:
annotations = read_groundtruth_file(
os.path.join(path_to_data, f"{match.group(1)}.gt_data.txt")
)
self.images.append((img_file, annotations))
2025-11-09 12:10:38 +01:00
self.images.sort(
key=lambda x: int(re.match(r"(.*/)(\d+)(\.jpg)", x[0]).group(2))
)
2025-10-13 14:48:00 +02:00
def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, int]:
"""
@return: 3-tuple of image tensor, label grid, and image (file-)number
"""
2025-11-09 12:10:38 +01:00
img = Image.open(self.images[idx][0]).convert("RGB")
padding = self.__padding__(img)
transform = transforms.Compose(
[
transforms.Pad(padding, 0),
transforms.Resize((self.image_size, self.image_size)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
img_tensor = transform(img)
2025-11-09 12:33:02 +01:00
img_id = re.match(r".*(\/)([0-9]+)(\.[^\/]*$)", self.images[idx][0]).group(2)
if self.is_test:
return (img_tensor, torch.Tensor(), int(img_id))
2025-11-09 13:01:46 +01:00
scaled_annotations = []
for annotation in self.images[idx][1]:
annotation.scale(self.image_size / max(img.size[0], img.size[1]))
scaled_annotations.append(annotation)
2025-11-09 12:10:38 +01:00
label_grid = get_label_grid(
2025-11-09 13:01:46 +01:00
anchor_grid=self.anchor_grid, gts=scaled_annotations, min_iou=self.min_iou
2025-11-09 12:10:38 +01:00
)
return (img_tensor, label_grid, int(img_id))
2025-10-13 14:48:00 +02:00
def __len__(self) -> int:
2025-11-09 12:10:38 +01:00
return len(self.images)
def __padding__(self, img) -> Tuple[int, int, int, int]:
w, h = img.size
size = max(w, h)
right_pad = size - w
bottom_pad = size - h
return (0, 0, right_pad, bottom_pad)
2025-10-13 14:48:00 +02:00
def get_dataloader(
path_to_data: str,
image_size: int,
batch_size: int,
num_workers: int,
anchor_grid: np.ndarray,
is_test: bool,
2025-11-09 12:24:28 +01:00
is_train: bool = False,
2025-10-13 14:48:00 +02:00
) -> DataLoader:
2025-11-09 12:10:38 +01:00
dataset = MMP_Dataset(
path_to_data=path_to_data,
image_size=image_size,
is_test=is_test,
anchor_grid=anchor_grid,
min_iou=0.7,
)
dataloader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=is_train,
num_workers=num_workers,
pin_memory=True,
)
return dataloader
2025-10-13 14:48:00 +02:00
def calculate_max_coverage(loader: DataLoader, min_iou: float) -> float:
"""
@param loader: A DataLoader object, generated with the get_dataloader function.
@param min_iou: Minimum IoU overlap that is required to count a ground truth box as covered.
@return: Ratio of how mamy ground truth boxes are covered by a label grid box. Must be a value between 0 and 1.
"""
2025-11-09 17:49:50 +01:00
total_boxes = 0
covered_boxes = 0
dataset: MMP_Dataset = loader.dataset
anchor_grid = dataset.anchor_grid
for img, _, img_id in islice(loader, 4):
for batch_index in range(len(img)):
gts_file = os.path.join(
dataset.path_to_data,
f"{str(img_id[batch_index].item()).zfill(8)}.gt_data.txt",
)
gts = read_groundtruth_file(gts_file)
total_boxes += len(gts)
for annotation in gts:
for box_idx in np.ndindex(anchor_grid.shape[:-1]):
box_annotation = AnnotationRect.fromarray(anchor_grid[box_idx])
calculated_iou = iou(annotation, box_annotation)
if calculated_iou >= min_iou:
covered_boxes += 1
break
return covered_boxes / total_boxes
def draw_image_tensor_with_annotations(
img: torch.Tensor,
annotations: Sequence["AnnotationRect"] | None,
output_file: str,
2025-11-09 12:10:38 +01:00
):
# Convert tensor to numpy, permute dimensions
2025-11-09 17:49:50 +01:00
img_np = img.permute(1, 2, 0).numpy()
img_np = np.clip(img_np, 0, 1)
2025-11-09 12:10:38 +01:00
fig, ax = plt.subplots(1)
ax.imshow(img_np)
for rect in annotations:
x1, y1, x2, y2 = rect.x1, rect.y1, rect.x2, rect.y2
w = x2 - x1
h = y2 - y1
patch = patches.Rectangle(
(x1, y1), w, h, linewidth=2, edgecolor="red", facecolor="none"
)
ax.add_patch(patch)
plt.axis("off")
plt.tight_layout(pad=0)
plt.savefig(output_file, bbox_inches="tight", pad_inches=0)
plt.close(fig)
2025-11-09 17:49:50 +01:00
def denormalize_image_tensor(
img: torch.Tensor,
mean=torch.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1),
std=torch.tensor([0.229, 0.224, 0.225]).view(-1, 1, 1),
) -> torch.Tensor:
img_denormalized = img * std + mean
return img_denormalized
def draw_positive_boxes(
2025-11-09 12:10:38 +01:00
img_tensor: torch.Tensor,
label_grid: np.ndarray,
img_id: torch.Tensor,
anchor_grid: np.ndarray,
):
annotations = [
AnnotationRect.fromarray(anchor_grid[idx])
for idx in np.ndindex(anchor_grid.shape[:-1])
if label_grid[idx]
]
2025-11-09 17:49:50 +01:00
draw_image_tensor_with_annotations(
2025-11-09 12:10:38 +01:00
img_tensor,
annotations=annotations,
2025-11-09 17:49:50 +01:00
output_file=f"mmp/a4/.output/{img_id}_transformed.png",
2025-11-09 12:10:38 +01:00
)
def main():
anchor_grid = get_anchor_grid(
anchor_widths=[16, 32, 64, 96, 128, 144, 150, 160, 192, 224, 256],
aspect_ratios=[1 / 3, 1 / 2, 3 / 5, 2 / 3, 3 / 4, 1, 4 / 3, 5 / 3, 2, 2.5, 3],
num_rows=32,
num_cols=32,
scale_factor=20,
)
dataloader = get_dataloader(
num_workers=6,
is_train=True,
is_test=False,
batch_size=8,
image_size=224,
path_to_data=".data/mmp-public-3.2/train",
anchor_grid=anchor_grid,
)
for img, label, img_id in islice(dataloader, 12):
2025-11-09 17:49:50 +01:00
draw_positive_boxes(
img_tensor=denormalize_image_tensor(img=img[5]),
2025-11-09 12:10:38 +01:00
label_grid=label[5],
img_id=img_id[5],
anchor_grid=anchor_grid,
)
if __name__ == "__main__":
main()