

Städtisches Jakob-Fugger-Gymnasium
Qualifikationsphase 2020/2022

Seminararbeit

Thema: Deepfakes im Bereich Fotografie

Verfasser der Seminararbeit: Elias Kohout

Titel des Seminars: Bildgebende Verfahren in der Physik

Seminarleiter: StD Jörg Haas

Abgabetermin: 9.11.2021

Abgegeben am ..

Abschlusspräsentation abgelegt am ..

Unterschrift des Seminarleiters: ..

Bewertung Note Notenstufe in Worten Punkte Punkte

schriftliche Arbeit 3 - Befriedigend 7 x 3 21
Abschlusspräsentation 2 Gut 10 x 1 10

Summe: 31
Gesamtleistung nach § 29 (7) GSO = Summe:2 (gerundet) 16

Inhaltsverzeichnis

1 Einleitung 3

2 Künstliche Neuronale Netze 4

2.1 Grundlagen . 4
2.2 Grenzen der herkömmlichen Programmierung 4
2.3 Lösungen durch künstliche Neuronale Netze 5
2.4 Das künstliche Neuron . 5
2.5 Aufbau eines künstliches Neuronales Netz 6

3 Deepfake 7

3.1 Sammeln und Aufbereiten der Daten 7
3.1.1 Gesichtserkennung . 7
3.1.2 Gesichtsextrahierung . 8

3.2 Aufbau des Neuronalen Netz . 8
3.2.1 Encoder und Decoder . 8
3.2.2 Autoencoder . 9
3.2.3 Convolutional Neural Networks 9

3.3 Trainieren des Netzes . 10
3.3.1 Bewertung des Netzes . 11
3.3.2 Der Lernprozess . 12
3.3.3 Versuchsreihe zur Lernrate 13

3.4 Erstellen eines Deepfake Videos . 15
3.5 Ergebnisse . 15
3.6 Fazit und Ausblick . 17

1 Einleitung

Technologie bestimmt unser Leben, insbesondere die fortschreitende Digitalisierung
dringt in immer mehr Bereiche unseres Lebens vor und damit geht einher, dass
immer mehr Daten über uns gesammelt werden. Riesige Unternehmen wie Google
oder Facebook verdienen Unmengen an Geld mit dem Sammeln und Verarbeiten von
enormen Datenmengen. Dies geht o�ensichtlich über das Erstellen von Diagrammen
hinaus. Ein großer Bereich der Informatik, welcher von diesen Entwicklungen profi-
tiert, ist der des maschinellen Lernens.

Dies ist insbesondere der Fall, wenn es um künstliche Neuronale Netze geht, die
vor allem mit großen Datenmengen gefüttert werden, um in diesen abstrakte Muster
zu erkennen. Hierbei wird oft die Methode des Deep Learning verwendet. Neuronale
Netze, die diesem Schema entsprechen, können für zahlreiche Anwendungsaufgaben
verwendet werden, bei denen man mit konventioneller Programmierung nicht weiter
kommt. Solche Netze werden zum Beispiel für das Klassifizieren oder Segmentieren
von Bildern, verbesserte Suchergebnisse bei Suchmaschinen, Vorschläge in Sozialen
Medien, dem Erkennen von Gesichtern und vielen weiteren Anwendungen verwendet.
Die Nutzung solcher Netze für das Erstellen von Deepfakes ist das Thema dieser
Seminararbeit.

Der Begri� Deepfake wird seit 2017 [Ngu+21] verwendet und hat seit dem für
recht viel Aufmerksamkeit gesorgt. Diese Art der Neuronalen Netzen ermöglicht es
das Gesicht einer bestimmten Person auf das einer anderen Person in einem Video
zu projizieren und damit theoretisch die projizierte Person alles sagen oder ma-
chen zu lassen. Diese Art des Fälschens von Videos ist generell nichts Neues, das
Revolutionäre ist die Einfachheit, mit der solche Videos erstellt werden können.
Da Programme mit den richtigen künstlichen Neuronalen Netzen frei und kostenlos
im Internet zu haben sind, ist nicht mehr nötig als ein Computer mit einer han-
delsüblichen Grafikkarte, Video- oder Bildmaterial der Person und etwas Zeit, um
ein Deepfake-Video zu erstellen.

Dass dies Probleme verursachen kann, ist o�ensichtlich. Heute kann man in den
meisten Fällen noch erkennen, dass es sich um ein gefälschtes Video handelt, die
Technologie wird jedoch unaufhaltsam besser werden und es wird der Tag kommen,
an dem man mit dem Auge die gefälschten Videos nicht mehr von den Echten unter-
scheiden kann. Die politischen Gefahren sollten jedem klar sein, aber es geht noch
weiter. Identitätsdiebstahl mit der Hilfe von Deepfakes ist bereits heute ein Problem.
Ein sehr großer Teil der Deepfakes ist pornografischer Natur und man stelle sich vor
wie leicht man das Leben einer Person durch ein virales Video zur Hölle machen
kann. Und was ist mit Videomaterial von Überwachungskameras, das vor Gericht
standhalten muss und sowieso häufig eine niedrige Auflösung hat, um nur ein paar
Beispiele zu nennen.

3

Da kommt die Frage auf, wie man dem entgegenwirken kann? Eine Möglichkeit,
und es gibt bereits Ansätze dafür, wäre Deepfakes mit künstlicher Intelligenz zu er-
kennen. Aber bevor man daran arbeiten kann, muss man Deepfakes verstehen und
eine generelle Vorsicht und Skepsis vor dem was man im Internet an Bildern und
Videos sieht, würde sicherlich auch helfen. Die folgende Arbeit soll genau das tun,
also ein Verständnis von der Funktionsweise von Neuronalen Netzen im Allgemeinen,
sowie im Speziellen der Funktionsweise und dem Aufbau eines künstlichen Neuro-
nalen Netzes zur Erstellung von Deepfakes auch anhand von praktischen Beispielen
vermitteln.

Begonnen wird mit der Erklärung der grundlegenden Begri�e und Konzepte,
die für das Verständnis des weiteren Verlaufs nötig sind. Hierzu zählen unter ande-
rem die Funktion und Implementierung eines künstlichen Neuron, eines Neuronalen
Netz, sowie die Definition und Erklärung von Convolutional Neural Networks und
Autoencodern. Es folgt die detaillierte Beschreibung des Prozesses der Erstellung
eines künstlichen Neuronalen Netzes zur Erstellung von Deepfakes beziehungsweise
die tatsächliche Erstellung eines solchen Deepfake anhand einer selbst konstruierten
Implementierung.

2 Künstliche Neuronale Netze

2.1 Grundlagen

Künstliche Neuronale Netze (KNN) sind aus der Bionik heraus entstanden. Die
Bionik verbindet Biologie und Technik und ahmt so die Natur und das Leben nach.
Die thematisierte Technologie ist Nervenzellen und dem Gehirn nachempfunden. Im
Folgenden werden nun die Grundlagen von neuronalen Netzen verdeutlicht, dabei
werden teilweise vereinfachte Darstellungen verwendet. Für mein Modell verwende
ich eine Bibliothek, also Programmcode, der von jemand anderem zur freien Ver-
wendung zugänglich gemacht wurde, namens TensorFlow, die den eigentlichen Bau
des KNN vereinfacht.

2.2 Grenzen der herkömmlichen Programmierung

Zunächst sollte klargestellt werden, warum diese außergewöhnliche Technologie not-
wendig ist. Wenn man sich in der Informatik mit dem Erstellen von Gesichtern
als Bilder befasst, gerät man mit herkömmlicher Programmierung schnell an seine
Grenzen. Denn wie bringt man einem Computer bei, was genau ein Gesicht ist? Für
uns Menschen ist das Erkennen von Gesichtern intuitiv, da vergisst man leicht, was
für eine enorme Leistung das eigentlich ist. Denn kein Gesicht sieht gleich aus und

4

dennoch erkennen wir sie. Es geht noch weiter, auch bei einem schrägen oder umge-
drehten Gesicht, bei unterschiedlichen Lichtverhältnissen oder wenn wir uns einen
Smiley anschauen erkennen wird dennoch ein Gesicht. Computer lernen jedoch nicht
wie wir Menschen, man muss ihm ganz konkret definieren, was ein Gesicht ist. Com-
puter speichern alle Daten als Zahlenwerte und führen nur streng definierte Befehle
aus. Wie sagen wir also einem Computer, was das recht abstrakte Konzept eines
Gesichts ist?

2.3 Lösungen durch künstliche Neuronale Netze

Bei der Lösung orientiert man sich an der Natur und modelliert die Strukturen
im Gehirn. Es wird aus Modellen von Neuronen ein künstliches neuronales Netz
konstruiert. Dieses ermöglicht bei richtiger Konfiguration zum Beispiel das Erstellen
von Gesichtern.

Wenn wir versuchen würden einem Computer ein Gesicht zu beschreiben, könnten
wir damit anfangen zu sagen, es gibt zwei Augen und einen Mund. Der Computer
weiß aber nicht was das ist, wir müssen also auch ein Auge definieren. Hier könnte
man anbringen das es sich hierbei, in einem Bild, um Kreise, Ellipsen und ande-
re Geometrische Formen handelt. Diese wiederum werden durch Kanten zwischen
verschiedenen Farben definiert.

Betrachtet man das Innere, also die Funktionsweise, des KNN lässt sich hier ein
ähnlicher Abstraktionsprozess erkennen, sofern das KNN funktioniert also richtig
konfiguriert wurde. Da ein solches Netz viele Millionen Parameter haben kann, wird
die Konfiguration nicht von Hand gemacht, sondern durch einen Algorithmus. Dieser
Prozess wird dann als Lernen bezeichnet.

2.4 Das künstliche Neuron

Wie also ist der kleinste Teil des neuronalen Netzes, das künstliche Neuron, aufge-
baut? Es handelt sich hierbei nur um eine mathematische Formel, deren Struktur
allerdings einem tatsächlichen biologischen Neuron ähnelt. Man sollte also zunächst
ein biologisches Neuron verstehen. Im Zentrum steht der Zellkörper, an dem sich
zum Einen die Dendriten und zum Anderen das Axon mit den Synapsen befindet.
Die Dendriten sind quasi die Eingabe des Neuron, hier nimmt das Selbe elektrische
Signale von anderen Neuronen auf. Überschreitet dabei die Summe der Eingangssi-
gnale einen gewissen Wert, gibt die Zelle selbst ein Signal am Axon ab.

Dieses Prinzip wird nun ähnlich in der Sprache der Mathematik abgebildet und
in der Informatik implementiert. Als Eingabe wird hierbei eine Reihe von Zahlen
verwendet. Diese lassen sich als mehrdimensionaler Vektor darstellen, er wird hier als
x̨ bezeichnet. Da die Eingabewerte von unterschiedlicher Wichtigkeit sein können,

5

x

y

Abbildung 1: Stufenfunktion

werden sie ihrer Bedeutung nach gewichtet. Dazu wird ein weiterer Vektor an Zah-
len, mit der gleichen dimensionalen Größe wie x̨, verwendet, der hier w̨ genannt. Die
Werte von den beiden Vektoren werden nun einzeln miteinander multipliziert und
anschließend werden die Ergebnisse zu einer Zahl addiert.

x̨ ¶ g̨ =

Q

cccca

x1

x2

x3
...

R

ddddb
¶

Q

cccca

w1

w2

w3
...

R

ddddb
= (x1 · w1) + (x2 · w2) + (x3 · w3) + . . .

Dies wird auch als Skalarprodukt bezeichnet. Dabei haben Zahlen mit einem großen
Gewichtungsfaktor einen größeren Einfluss auf das Ergebnis als Zahlen mit einem
kleineren Gewichtungsfaktor.

Um die Hemmschwelle, die in einem Neuron überschritten werden muss, damit
dieses auch ein Signal abgibt, zu implementieren, wird eine mathematische Funkti-
on verwendet. Diese wird Aktivierungsfunktion genannt. Eine sehr simple Variante
ist die Stufenfunktion, die im Falle des Überschreitens eines Wertes eins ergibt,
andernfalls null [SS20a].

Man ist hier jedoch nicht nur auf diese Funktion beschränkt. Die beiden Be-
rechnungen lassen sich nun kombinieren und als mathematische Formel ausdrücken.
Hierbei ist fa die Aktivierungsfunktion und y das Ergebnis, welches als Eingabe für
das nächste Neuron verwendet werden kann.

fa(x̨ ¶ w̨) = y

2.5 Aufbau eines künstliches Neuronales Netz

Um ein funktionierendes KNN zu erhalten, müssen nun mehrere Neuronen verbun-
den werden. Dies geschieht in Schichten oder Layers. Die erste Schicht nimmt die
Eingabe auf und gibt sie an die nächste Schicht weiter.

In Tensorflow gibt es ein Modul, das sich um die Schichten kümmert, es heißt
keras.layers. Hier besteht die erste Schicht an Neuronen aus drei künstlichen Neu-

6

ronen und die Eingabe besteht aus drei Zahlenwerten. Die letzte Schicht entspricht
auch gleich der Größe der Ausgabe, in diesem Fall zwei Zahlenwerte.

modell = tensorflow.keras.Sequential(name='Testmodell')
modell.add(tensorflow.keras.layers.Dense(3, input_shape=(3,)))
modell.add(tensorflow.keras.layers.Dense(2))

Dense steht hierbei für eine recht häufig verwendete Art von Schicht, bei der
jedes Ergebnis der vorherigen Schicht als Eingabe für jedes einzelne Neuron dieser
Schicht verwendet wird. Die Neuronen sind vollständig verbunden. Das KNN könnte
man also graphisch so darstellen:

Abbildung 2: Beispielhafte Struktur eines KNN

3 Deepfake

3.1 Sammeln und Aufbereiten der Daten

Damit das KNN die Ergebnisse liefert, die man erwartet, muss man es mit den
richtigen Daten füttern. Wie genau dieser Prozess, der auch als Training bezeichnet
wird, funktioniert wird noch erläutert. Wichtig ist, es werden zahlreiche, und das
heißt mehrere Tausende oder sogar Zehntausende, Bilder von Gesichter der beiden
Personen, deren Gesichter schlussendlich getauscht werden sollen, benötigt. Man
beschränkt sich hierbei nur auf den Ausschnitt eines Bildes, das Gesicht, um die
Komplexität der Aufgabe gering zu halten. Der wohl einfachste Weg viele Bilder zu
finden ist, sie aus einem Video zu extrahieren.

3.1.1 Gesichtserkennung

Wenn man sich dann ein Video zum Beispiel von YouTube heruntergeladen hat, geht
es daran die Gesichter in diesem Video zu erfassen. Hierbei kann auch eine Art des
maschinellen Lernens verwendet werden, welche mit Kaskaden die Gesichter in den
Bilder lokalisiert [VJ01]. Da es dennoch oft schwer ist Videos mit ausschließlich einer
Person zu finden, müssen die Gesichter, welche man haben möchte, noch bestätigt
werden. Dies wird mit einer Bibliothek namens face recognition umgesetzt. Dabei

7

wird das gefundene Bild mit einem Bild der gesuchten Person verglichen. Ähneln
sie sich ausreichend kann davon ausgegangen werden, dass es sich um Gesichter der
selben Person handelt.

3.1.2 Gesichtsextrahierung

Führ man nun dieses Programm aus, wird ein Gesicht in dem Video gefunden und
validiert, anschließend ausgeschnitten und in einer Datei auf der Festplatte gespei-
chert. Dies wird für ein ausreichend langes Video einmal durchgeführt damit später
darauf zugegri�en werden kann.

3.2 Aufbau des Neuronalen Netz

Damit eine sinnvolle Struktur für das KNN erstellt werden kann, muss zunächst
das Ziel festgelegt werden. Hier ist die Aufgabe das aus dem Gesicht von Person A
das Gesicht von Person B mit dem selben Gesichtsausdruck kreiert wird. Um dies
umzusetzen wird zunächst das Gesicht von Person A auf verhältnismäßig wenige
Zahlenwerte reduziert. Diese Werte sollten dann den Gesichtsausdruck widerspie-
geln. Daraus wird dann ein Gesicht von Person B konstruiert.

3.2.1 Encoder und Decoder

Mit dem Encoder werden die Bilder in Zahlenwerte umgewandelt, mit dem Decoder
wird daraus wieder ein Bild konstruiert. Die Zahlenwerte sind von der enthalten
Datenmenge deutlich kleiner als die Bilder selbst, um das KNN zu zwingen, Muster
in den Bildern zu erkennen. Es werden für jede Person ein eigener Decoder erstellt
und Trainiert, der Encoder ist jedoch der Gleiche. Dies ist der Fall, um sicherzustel-
len, dass für jedes Bild dieselben Muster erkannt und damit die Informationen der
Zahlenwerte für jeden der beiden Decoder verständlich sind.

Abbildung 3: Encoder und Decoder

8

3.2.2 Autoencoder

Zum Trainieren werden der Encoder und Decoder zu einem Autoencoder zusam-
mengefasst. Dieser komprimiert dann ein Bild und versucht es möglichst genau
wieder aufzubauen. Dies wird für beide Decoder gemacht. Wenn dann der Zeit-
punkt kommt zu dem man das Gesicht fälscht, wird dieses durch den Encoder
geschickt und anschließend mit dem jeweils anderen Decoder wieder rekonstruiert
[DLeaningForDeepF˙s2f].

Abbildung 4: Fälschen von Gesichtern mit Encoder und Decoder

3.2.3 Convolutional Neural Networks

Bei einem wie zuvor beschrieben simplen KNN muss das Bild zur Eingabe in eine
Liste von Zahlen umgewandelt werden. Hierzu wird jede Reihe des Bildes als ei-
ne Liste von Zahlen übergeben. Dabei geht jedoch weitestgehend ein Verständnis
über die räumliche Struktur des Bildes verloren. Um dabei Abhilfe zu scha�en kann
man Convolutional Neural Networks verwenden. Diese Art der KNN integriert die
Bildverarbeitung mit Filtermatrizen (eng. convolution matrix).

Filtermatrizen werden in der Bildverarbeitung dazu verwendet, zahlreiche E�ek-
te auf Bilder anzuwenden. Es handelt sich hierbei um simple Filter wie zum Beispiel
Blur oder Kantenerkennung. Der Funktion dieser liegt dabei eine Zahlenmatrix zu-
grunde, welche beliebig groß sein kann, wobei sie jedoch kleiner als das Bild sein
sollte.

+1 0 -1
+2 0 -2
+1 0 -1

Abbildung 5: Beispielhafte Filtermatrix

Diese Matrix – nehmen wir in diesem Beispiel an, sie hat ein Größe von 3x3 –
wird dann auf ein zu verarbeitendes Bild gelegt, sodass neun Pixel bedeckt werden.
Nun wird jeder Wert der Matrix mit dem darunterliegenden Wert des Pixel mul-
tipliziert. Alle diese Produkte werden addiert und das Ergebnis ist der Pixelwert
des Ergebnisbildes an dieser Stelle. Anschließend ist es noch sinnvoll das Bild zu
normalisieren, um negative oder zu große Zahlenwerte für die Pixel zu verhindern.
Diese Schritte werden für das gesamte Bild durchgeführt bis ein fast gleichgroßes

9

gefiltertes Bild entsteht. Je nachdem wie man die Filtermatrix konfiguriert lassen,
sich andere E�ekte erzielen. Die in Abbildung 5 dargestellt Matrix stellt vertika-
le Kanten heraus. Dies sieht dann, wenn es auf ein Bild angewendet wird, wie in
Abbildung 6 aus.

Abbildung 6: E�ekt der Filtermatrix

Dieses Verfahren eignet sich äußerst gut, um Strukturen in Bilder zu erkennen,
weshalb es auch für Deepfakes in den Convolutional Neural Networks Verwendung
findet. Beim Decoder wird der gesamte Prozess mehr oder weniger umgedreht um
Strukturen aufzubauen. Wenn man ein solches Netz trainiert lässt man den Com-
puter darüber entscheiden welche Werte für die Filtermatrizen ausgewählt werden.
Betrachtet man ein einfach verknüpftes KNN von innen, sieht dies sehr chaotisch
aus. Abbildung 7 stellt genau das dar, dunkle Pixel sind negative Werte, graue Pixel
entsprechen Werten nahe Null und Weiße Pixel sind große positive Werte.

Abbildung 7: Gewichtungen von Neuronen der vier Schichten eines Autoencoder

Obwohl es theoretisch Muster in den Bildern erkennen sollte, geschieht dies auf
eine so komplexe Art und Weise, dass es für uns Menschen völlig unverständlich ist.
Es funktioniert, ist aber sicherlich nicht sehr e�zient.

Betrachtet man, was mit Bildern geschieht, wenn sie von einem Convolutional
Neural Network verarbeitet werden, erscheint dies deutlich strukturierter.

3.3 Trainieren des Netzes

Zum Verbessern der Leistung des Netzes wird es mit Bildern gefüttert. Zu jedem
Bild wird zur Überprüfung auch das erwartete Bild mitgeliefert, quasi die Lösung.
Im diesem Fall, da es sich um einen Autoencoder handelt, sind beide Bilder das
Selbe. Allgemeinen sei noch erwähnt, dass das gesamte künstliche Neuronale Netz

10

mathematisch als Funktion beschriebenen werden kann, die für jedes Gewicht im
Netz ein Parameter hat.

3.3.1 Bewertung des Netzes

Damit das künstliche Neuronale Netz trainiert, also in seiner Funktion verbessert
werden kann, muss es zunächst bewertet werden. Dies wird mit einem errechneten
Wert namens Fehler oder Loss umgesetzt. Der Loss wird mit einer Funktion berech-
net, die variiert werden kann. In dem hier beschriebenen Fall wird eine Funktion
namens Mean Squared Error [Goo21a] verwendet. Die eben genannte Funktion ver-
gleicht das Ergebnis des KNN mit den erwarteten Werten und beurteilt wie sehr
diese beiden sich ähneln. Für ein besseres Verständnis hier ein Beispiel. Stellen wir
uns, vor wir haben ein KNN mit einem Neuron und zwei Parametern, einem Ein-
gabewert und einem Ausgabewert und es wird versucht Hauspreise auf Basis der
Anzahl der Fenster zu bestimmen. Wir haben also als Eingabe die Anzahl der Fens-
ter und als Ausgabe den Hauspreis in 100.000Ä. Die Daten zu den Häusern können
in einem Diagramm wie in Abbildung 8 dargestellt werden.

Abbildung 8: Beispiel Hauspreisanalyse (erfundene Daten)

Das Neuron kann mit seinen zwei Parametern, wovon einer als Bias nur addiert
wird, als lineare Funktion in dem Format f(x) = w1 ·x+w2 dargestellt werden. Es ist
nun das Ziel des Lernalgorithmus die Gewichte w1 und w2 so anzupassen, dass das
Neuron eine möglichst genaue Aussage über die Hauspreise machen kann. Zu Beginn
wird das Neuron mit zufälligen Werten initialisiert, nehmen wir beispielsweise die
Werte w1 = 0, 9 und w2 = ≠3 wie es auf der linken Seite von Abbildung 9 dargestellt
wird. Der Fehler wird nun aus der Di�erenz des tatsächlichen Hauspreises und dem
mit dem Neuron errechneten Wert gebildet. Um bei der Subtraktion der beiden
Werte keine Negative Ergebnisse zu erhalten und große Abweichungen stärker zu
gewichten wird der Wert quadriert.

Da mit mehreren Werten gerechnet wird, wird anschließend der Durchschnitt
gebildet. Der Fehler-Wert der linke Funktion in Abbildung 9 lässt sich also so be-
rechnen:

11

Abbildung 9: Beispiel Hauspreisanalyse mit Funktionen

(f(6)≠ 1)2 + . . .+ (f(12)≠ 2, 5)2
7 ¥ 7, 3

Die Funktion g(x) = 0, 2x + 1, 7 auf der rechten Seite von Abbildung 9 hat einen
Fehler-Wert von nur ungefähr 2, 8 und ist damit deutlich akkurater als die zuvor
dargestellte Funktion.

Was hier für jedes Haus gemacht wurde, wird bei dem Deepfake KNN mit jedem
Bild gemacht.

Das Neuronale Netz ist also um so besser, je niedriger der Fehler-Wert ist.

3.3.2 Der Lernprozess

Der in Kapitel 3.3.1 beschriebene Prozess des Findens von dem Fehler-Wert kann
auch als Funktion beschrieben werden. Und da das KNN für jede Kombination von
Werten für die Parameter einen Fehler-Wert hat, kann man diese Fehlerfunktion
auch graphisch darstellen. Dies wird möglich indem man den Fehler für alle Kom-
binationen berechnet. Für das obige Beispiel mit zwei Parametern ist dies noch
möglich, man erhält einen dreidimensionalen Graphen. Es ist nun das Ziel des Ler-
nens, ein Minimum in der Fehlerfunktion zu finden. Es wäre jedoch ine�zient eine
Großzahl von Fehler-Werten wahllos zu ermitteln und sich das Beste auszusuchen.
Deshalb wird für einen Fehler-Wert die Steigung der Fehlerfunktion in diesem Punkt
berechnet. Mit der lokalen Ableitung kann die Richtung und Stärke bestimmt wer-
den, mit der der Parameter, bzw. die Gewichtung w verändert werden muss, um
einem Minimum näher zu kommen. Dabei wird für jeden Parameter eine partielle
Ableitung bestimmt. Der Parameter wird dann um den Wert der Steigung g re-
duziert. Um hier nun noch ein bisschen mehr Kontrolle über die Geschwindigkeit
der Änderungen zu haben wird der Wert der Steigung noch mit der zuvor festge-
legten Lernrate L multipliziert [SS20b]. Dieser Prozess wird für jeden Lernschritt
wiederholt.

wneu = walt ≠ L · g

Dieser Prozess des Ändern der Gewichte ist die Aufgabe des Optimizers, welcher

12

auch frei wählbar ist. Der wohl Simpelste, der außerdem nach der oben beschriebenen
Formel funktioniert, heißt Stochastic Gradient Descent (SGD) [Goo21c].

3.3.3 Versuchsreihe zur Lernrate

Bei dem Erstellen eines KNN kann an zahlreiche Stellschrauben gedreht werden.
Sehr wichtig für erfolgreiches Trainieren des Netzes ist die Lernrate. Um den Einfluss
dieser zu demonstrieren und schlussendlich einen Wert in der richtigen Größenordnung
zu wählen, wurde eine Versuchsreihe mit verschieden Lernraten und Optimizern
durchgeführt. Hierzu wurde folgendes Modell verwendet.

Schichttyp Eingabeform Ausgabeform Parameter

Reshape 120, 120, 3 43200 0
Dense 43200 500 21600500
Dense 500 100 50500
Dense 100 500 50500
Dense 500 43200 21643200
Reshape 43200 120, 120, 3 0

Tabelle 1: Struktur des Modells zu der Versuchsreihe zur Lernrate

In der ersten Spalte von Tabelle 1 wird angegeben, um was für eine Art von
Schicht es sich handelt. Die zweite Spalte gibt an in welchem Format und zu welcher
Anzahl die verschiedene Datenpunkte an die jeweilige Schicht übergeben werden.
Steht nur eine Zahl in der Tabelle wird der Schicht eine simple eindimensionale
Liste an Zahlen übergeben. Da ein Bild jedoch mehrdimensional ist, in diesem Fall
120 Pixelwerte in x-Richtung, 120 Pixelwerte in y-Richtung und zu jedem Pixel
3 Farbwerte, finden sich als Ein- und Ausgabe des gesamten Netzes jeweils drei
Werte. Dies ist auch der Grund, warum zum Beginn und Ende eine Reshape-Schicht
also Umformungsschicht steht, die aus den dreidimensionalen Werten des Bildes eine
einfache Liste an Werten macht beziehungsweise am Ende andersherum. Das Modell
besteht hier aus zwei Teilen, dem Encoder, der die ersten drei Schichten ausmacht,
und dem Decoder der aus den letzten drei Schichten besteht.

Das Modell wurde nun mit dem SGD-Optimizer und verschiedenen Lernraten
für jeweils sechs Stunden trainiert. Da e�ektiv zwei Decoder trainiert werden sind
die angegeben Daten über einen Zeitraum von ungefähr drei Stunden. Folgende
Lernraten wurden ausprobiert.

Die in Tabelle 2 angegebene Epoche ist quasi eine Lerneinheit, diese unterschei-
den sich leicht, da die Modelle für eine bestimmte Zeit trainiert wurden. Es ist bereits
zu beobachten, dass je größer die Lernrate ist desto geringer ist auch der Fehler. Dies
wird besonders deutlicher, wenn man den Wert des Fehler über die Trainingszeit als
Diagramm (Abbildung 10) darstellt.

Man kann außerdem erkennen, dass sich der Fehler bei der Lernrate 10≠5 überhaupt

13

Lernrate Epochen min. Fehler max. Fehler Ø Fehler

1 · 10≠1 6520 0.0037 0.3261 0.0055
1 · 10≠2 6150 0.0082 0.3361 0.0120
1 · 10≠3 5930 0.0166 0.3419 0.0288
1 · 10≠4 5019 0.0172 0.3418 0.1589
1 · 10≠5 6033 0.3356 0.3458 0.3367

Tabelle 2: Fehlerwerte bei verschiedenen Lernraten, SGD (gerundete Werte)

Abbildung 10: Fehler für verschiedene Lernraten, SGD

nicht mehr verbessert. Wenn man die Lernrate also senkt scheint es einen Wert zu
geben, ab dem der Lernalgorithmus unbrauchbar wird und sich das Modell nicht
verbessert. Erhöht man die Lernrate stetig, findet sich auch eine Grenze ab der das
Lernen nicht mehr e�ektiv ist. Wird versucht das Modell mit einer Lernrate von
0,5 zu trainieren, steigt der Fehler äußerst schnell in absurde Höhen an. Dieser hier
extreme E�ekt wird als Overfitting [NNPython:Overfitting] bezeichnet und ent-
steht indem man mit zu großen Schritten über das Minimum der Fehler-Funktion
hinausschießt. Dies wird noch deutlicher, wenn man sich einen Alternativen Opti-
mizer, namens Adam [Goo21b; SS20c], anschaut. Dieser ist einer der am häufigsten
verwendeten Optimizer. Er wurde auf die gleiche Modellstruktur aus Tabelle 1 mit
verschiedenen Lernraten angewandt.

Lernrate Epochen min. Fehler max. Fehler Ø Fehler

1 · 10≠3 7450 0.0019 1094034.7500 195.1310
1 · 10≠4 7499 0.0015 0.1098 0.0017
5 · 10≠5 7341 0.0015 0.0526 0.0016
1 · 10≠5 6649 0.0015 0.1159 0.0017
5 · 10≠6 6212 0.0015 0.2405 0.0019
1 · 10≠6 4213 0.0021 0.3315 0.0044
1 · 10≠7 3805 0.0061 0.3392 0.0138

Tabelle 3: Fehlerwerte bei verschiedenen Lernraten, Adam (gerundete Werte)

14

Abbildung 11: Fehler für verschiedene Lernraten, Adam

Auch hier wird deutlich, das Modell lernt schneller, wenn die Lernrate größer
ist. Wird die Lernrate jedoch größer als ungefähr 10≠5 fängt die Kurve (Abbildung
11) an unregelmäßig zu werden, bis sie anfängt extrem zu fluktuieren und damit
nicht mehr e�ektiv am lernen ist. Wählt man die Lernrate jedoch zu klein, mit
dem Gedanken Overfitting zu vermeiden, lernt das Modell deutlich langsamer. Die
richtige Wahl der Lernrate ist also essenziell für das erfolgreiche Trainieren eines
KNN.

3.4 Erstellen eines Deepfake Videos

Nun da das KNN trainiert wurde, bleib nur noch das eigentliche Deepfake Video
zu erstellen. Das ist jetzt recht einfach, aus dem zu fälschenden Video werden die
Gesichter extrahiert, vom Encoder eingelesen und von dem jeweils Anderen Decoder
zu einem neuen Gesicht aufgebaut. Dieses Gesicht wird an der Gleichen Stelle wieder
ins Video eingefügt und fertig ist das Deepfake Video.

3.5 Ergebnisse

Was jetzt recht simple klang, ist in der tatsächlichen Umsetzung deutlich schwerer.
Die Schwierigkeit liegt dabei in der Festlegung der richtigen Struktur des KNN.
Hierbei funktioniert die Umsetzung des Autoencoder sehr gut, das Problem liegt in
dem Umwandeln der Bilder. Schlussendlich habe ich das beste Ergebnis mit einem
Convolutional Neural Network, dessen Ergebnisse man in Abbildung 12 und 13 sieht,
erhalten.

Die Ergebnisse sind verbesserungswürdig, und ohne gravierende strukturelle Änderungen
im KNN scheinen es, dass auch keine besseren Ergebnisse möglich sind. Auch langes
Trainieren ist da nicht die Lösung. Nach ein paar Stunden wird ein Minimum erreicht
und das KNN verbessert sich nicht mehr. Das konnte man sehr gut in Kapitel 3.3.3
beobachten, betrachtet man das linke Diagramm in Abbildung 11 kann man erken-
nen, dass der Fehler-Wert nie unter 0,0015 fällt. Dies wird sich auch nicht ändern,

15

Abbildung 12: Links: Eingabebild, Mitte: Mit dem Autoencoder erstellt, Rechts: Als
Biden rekontruiert

Abbildung 13: Links: Eingabebild, Mitte: Mit dem Autoencoder erstellt, Rechts: Als
Trump rekonstruiert

wenn das KNN noch länger trainiert wird. Dies war zumindest bei den Netzen, die
im Zuge dieser Arbeit konstruiert wurden der Fall.

Größere Netze sind auch nur begrenzt möglich. Die benötigte Menge an Ar-
beitsspeicher, sowohl vom Prozessor als auch von der Grafikkarte, überschreitet
schnell die handelsüblichen wenigen Gigabyte. Außerdem dauert das Trainieren pro
Epoche deutlich länger. Und wie man den Abbildungen 14 und 15 sieht, hat dies
auch keinen maßgeblichen Vorteil. Und das obwohl das Netz, mit dem die unteren
Bilder erstellt wurden, mit rund 12 Millionen mehr als doppelt so viele Parameter
hat, wie das Netz von den Abbildungen 12 und 13.

Abbildung 14: Links: Eingabebild, Mitte: Mit dem Autoencoder erstellt, Rechts: Als
Biden rekonstruiert

Abbildung 15: Links: Eingabebild, Mitte: Mit dem Autoencoder erstellt, Rechts: Als
Trump rekonstruiert

16

Im Vergleich zu einem einfach verknüpften KNN kann man jedoch Verbesserun-
gen erkennen. In Abbildung 16 sieht man Gesichter, die mit einem größeren einfach
verknüpften KNN erstellt wurden. Es wurde hierbei versucht aus dem Gesicht von
Biden, das von Chuck Norris zu machen.

Abbildung 16: Ergebnisse eines einfach verknüpften KNN

3.6 Fazit und Ausblick

Auch wenn mein KNN zur Erstellung von Deepfakes niemanden täuschen wird, gibt
es deutlich fortgeschrittenere Werkzeuge mit denen sich täuschend echte gefälschte
Videos erstellen lassen. Doch man sollte die Gefahr, die mit dieser Technologie ein-
hergeht nicht unterschätzen. Potente Programme zur Erstellung von Deepfakes sind
leicht zugänglich und durch soziale Medien können sich Falschinformation äußerst
schnell verbreiten. In der Zukunft werden Deepfakes immer besser werden, bis zu dem
Punkt wo wir sie als Menschen nicht mehr von echten Videos unterscheiden können.
Wir müssen uns also überlegen wie man damit umgehen sollte. Es gibt zwar den
Ansatz mit Maschinellem Lernen Deepfakes zu erkennen, allerdings sind wir noch
weit davon entfernt, dies auf die großen Mengen an Video- und Bildmaterial, das
wir konsumieren, anzuwenden. Es bleibt also die Frage, ob wir den Quellen, aus de-
nen wir unsere Informationen beziehen, trauen können? Ich denke stellen uns diese
Frage viel zu selten, obwohl die Antwort häufig Nein heißt. Nie von Falschinforma-
tion getäuscht zu werden, ist unmöglich, aber durch kritisches und hinterfragendes
Denken kann der Großteil entlarvt werden. Also fangen wir doch an, uns häufiger
zu fragen, kann das wirklich wahr sein?

17

Literaturverzeichnis

[Goo21a] Google. tf.keras.losses.MeanSquaredError. 2021. url: https://www.
tensorflow.org/api_docs/python/tf/keras/losses/MeanSquaredError.

[Goo21b] Google. tf.keras.optimizers.Adam. 2021. url: https://www.tensorflow.
org/api_docs/python/tf/keras/optimizers/Adam.

[Goo21c] Google. tf.keras.optimizers.SGD. 2021. url: https://www.tensorflow.
org/api_docs/python/tf/keras/optimizers/SGD.

[Ngu+21] Thanh Thi Nguyen u. a. Deep Learning for Deepfakes Creation andDe-
tection: A Survey, Seite 1. 26. Apr. 2021. url: https://arxiv.org/
pdf/1909.11573.pdf (besucht am 18. 06. 2021).

[SS20a] Joachim Steinwendner und Roland Schwaiger. Neuronale Netze program-
mieren mit Python. 2. Aufl. Bonn: Reihnwerk Computing, 2020, S. 31–
36.

[SS20b] Joachim Steinwendner und Roland Schwaiger. Neuronale Netze program-
mieren mit Python. 2. Aufl. Bonn: Reihnwerk Computing, 2020, S. 126–
128.

[SS20c] Joachim Steinwendner und Roland Schwaiger. Neuronale Netze program-
mieren mit Python. 2. Aufl. Bonn: Reihnwerk Computing, 2020, S. 214–
216.

[VJ01] Paul Viola und Michael Jones. Rapid Object Detection using a Boosted
Cascade of Simple Features. 2001. url: https://www.cs.cmu.edu/
~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf (besucht am
18. 06. 2021).

18

Abbildungsverzeichnis

1 Stufenfunktion,
Quelle: eigene Darstellung . 6

2 Beispielhafte Struktur eines KNN,
Quelle: https://en.wikipedia.org/wiki/File:Multi-LayerNeuralNetwork-
Vector-Blank.svg . 7

3 Encoder und Decoder,
Quelle: https://arxiv.org/pdf/1909.11573.pdf 8

4 Fälschen von Gesichter mit Encoder und Decoder,
Quelle: https://arxiv.org/pdf/1909.11573.pdf 9

5 Beispielhafte Filtermatrix,
Quelle: eigene Darstellung . 9

6 E�ekt der Filtermatrix,
Quelle: eigene Darstellung . 10

7 Gewichtungen von Neuronen der vier Schichten eines Autoencoder,
Quelle: eigene Darstellung . 10

8 Beispiel Hauspreisanalyse (erfundene Daten),
Quelle: eigene Darstellung . 11

9 Beispiel Hauspreisanalyse mit Funktionen,
Quelle: eigene Darstellung . 12

10 Fehler für verschiedene Lernraten, SGD,
Quelle: eigene Darstellung . 14

11 Fehler für verschiedene Lernraten, Adam,
Quelle: eigene Darstellung . 15

12 Ergebnis CNN (Trump als Eingabe),
Quelle: eigene Darstellung . 16

13 Beispielhaftes Ergebnis (Biden als Eingabe),
Quelle: eigene Darstellung . 16

14 Ergebnis CNN groß (Trump als Eingabe),
Quelle: eigene Darstellung . 16

15 Ergebnis CNN groß (Biden als Eingabe),
Quelle: eigene Darstellung . 16

16 Ergebnisse eines einfach verknüpften KNN,
Quelle: eigene Darstellung . 17

19

Quellcode-Dateien zur Implementierung

1 Deepfake.ipynb . 20
2 Gesichterextrahierer.py . 30
3 LoggingCallback.py . 35

20

1 Neuronales Netz zum erstellen eines Deepfakes

Dieses Dokument ermöglicht Dir, ein Deepfake-Video zu erstellen, wären Du über die Funktion
und den Aufbau des dazu verwendeten künstlichen Neuronalen Netzes lernst.

Das folgende Dokument setzt sich aus folgenden Schritten zusammen:

1. Einlesen und Aufbereiten von den Daten zum Trainieren

• Extrahieren von Gesichter aus einem Video
• Einlesen dieser Daten

2. Initialisieren des künstlichen Neuronalen Netzes

• Definieren der Struktur des Encoder und Decoder
• Kombinieren des Encoder und Decoder zu den Autoencodern
• Kompilieren der Modelle mit einem Optimizer

3. Trainieren

• Festlegen von Checkpoints für das Trainieren
• Eigentliches Trainieren des Netzes

4. Fälschen eines neuen Videos

1.1 Einlesen und Aufbereiten von den Daten zum Trainieren

Um dem künstlichen Neuronalen Netz beizubringen Gesichter zu erkennen und zu erstellen, wer-
den zahlreiche Bilder von Gesichtern benötigt. Im Fall von Deepfakes ist Bildmaterial von zwei
Personen nötig. Einfachheitshalber wird als Input Videomaterial verwendet.

1.1.1 Extrahieren von Gesichter aus einem Video

In den Variablen PFAD_A und PFAD_B werden die Pfade zu den Videos gespeichert, die dazu
verwendet werden Bilder von zwei Personen zu erxtrahieren. Es werden mit der Hilfe der Klasse
Gesichterextrahierer, die in einer externen Datei definiert wurde, die Gesichter aus den Videos
extrahiert. Die Bilder werden in einem Verzeichnis gespeichert.

[]: import Gesichterextrahierer as GE

PFAD_A = './daten/videomaterial/Joe_Biden/nur_joe_biden_gemischt.mp4'
PFAD_B = './daten/videomaterial/Chuck_Norris/nur_Chuck_Norris_gemischt.mp4'
PFAD_KASKADE = './daten/cascades/haarcascade_frontalface_default.xml'

g = GE.Gesichterextrahierer(PFAD_KASKADE)
g.lade(PFAD_A)
g.extrahiereGesichter(

21

max_anzahl_bilder=3000,
ordner_ausgabe='./daten/lernen/Gesichter/A'

)
g.lade(PFAD_B)
g.extrahiereGesichter(

max_anzahl_bilder=3000,
ordner_ausgabe='./daten/lernen/Gesichter/B'

)

del PFAD_A, PFAD_B, PFAD_KASKADE, g, GE

1.1.2 Einlesen der Bilddateien

Dass die Bilder als Datei gespeichert wurden, erspart uns beim nächsten Mal den vorherigen
Schritt. Die Dateien müssen nun allerdings wieder ins Programm geladen werden.

erstelleDatensatz(pfad: str) -> list[list]

Lädt alle Bilder in dem übergebenen Verzeichnis in zwei Datensätze und gibt diese als
Liste zurück. Jeder Pixelwert wird durch 255 geteilt, um die Werte auf den Bereich
zwischen 0 und 1 zu projektieren. Dies stellt sicher, dass die Werte des künstlischen
Neuronale Netzes (KNN), wenn das Bild übergeben wird, nicht zu groß werden. Die
Bilder werden in zwei Datensätze umgewandelt, zu 75% zum Trainieren des KNN und
zu 25% zum Prüfen und Bewerten der Leistung des Netzes.

teileListe(liste: list, verteilung: float) -> list[list]

Teilt die übergebene Liste in zwei Listen und gibt diese zurück. Die erste zurück-
gegebene Liste hat ein Länge von n-% der übergebenen Liste, wobei n als Kommazahl
zwischen 1 und 0 mit verteilung übergeben wird.

verzerren(bild: list, staerke: int) -> 'Bild'

Gibt eine verzerrte Version des übergebene Bild, als würde man das Bild von weiter
rechts betrachten. Die stärke (eine ganze Z)

[]: import numpy as np
import cv2
import os

def erstelleDatensatz(pfad: str, anzahl: int) -> list:
bilder = []
for wurzel, ordner, dateien in os.walk(pfad):

dateien = [e for e in dateien if e.split(".")[-1].lower() in ['png',�
Òæ'jpg', 'jpeg']]

dateien = dateien[:int(anzahl/4)]
for datei in dateien:

bild = cv2.imread(os.path.join(wurzel, datei))
bild = bild.astype('float32')
bild /= 255.0

22

for e in [bild, np.fliplr(bild), verzerren(bild, 10), np.
Òæfliplr(verzerren(bild, 10))]:

bilder.append(e)
if len(bilder) >= anzahl: break

np.random.shuffle(bilder)
bilder_train, bilder_test = teileListe(bilder, 0.75)
bilder_train, bilder_test = np.array(bilder_train), np.array(bilder_test)
print('%d Bilder aus %s geladen.' % (len(bilder), pfad))
return [bilder_train, bilder_test]

def teileListe(liste: list, verteilung: float) -> list:
x = int(len(liste)*verteilung)
return [liste[:x], liste[x:]]

def verzerren(bild: list, staerke: int) -> list:
hoehe, breite = bild.shape[0:2]
punkte_von = np.float32([[0, 0], [0, hoehe], [breite, 0], [breite, hoehe]])
punkte_nach = np.float32([[0, staerke], [0, hoehe-staerke], [breite, 0],�

Òæ[breite, hoehe]])
matrix = cv2.getPerspectiveTransform(punkte_von, punkte_nach)
bild_verzerrt = cv2.warpPerspective(bild, matrix, (breite, hoehe))
bild_verzerrt = bild_verzerrt[staerke:hoehe-staerke, staerke:breite-staerke]
return cv2.resize(bild_verzerrt, (breite, hoehe))

datensatz_gesichter_A_train, datensatz_gesichter_A_test =�
ÒæerstelleDatensatz('daten/lernen/Gesichter/A', 5000)

NAME_AUTOENCODER_A = 'Biden'

datensatz_gesichter_B_train, datensatz_gesichter_B_test =�
ÒæerstelleDatensatz('daten/lernen/Gesichter/B', 5000)

NAME_AUTOENCODER_B = 'Trump'

1.1.3 Um zu prüfen, ob die Bilder korrekt geladen wurden

[]: from matplotlib.pyplot import imshow
%matplotlib inline

imshow(cv2.cvtColor(datensatz_gesichter_A_test[4], cv2.COLOR_BGR2RGB))

del imshow

1.2 Initialisieren des Neuronalen Netzes

23

Nun wird das künstlichen Neuronale Netz initialisiert. Dazu wird die Struktur des Netzes
definiert und das Modell anschließend kompiliert.

1.2.1 Definieren der Struktur des Encoder und Decoder

Der NAME wird als Idenetifikation und zum Abspeichern verwendet.

logSummary(string: str)

Die Funktion, die später dazu verwendet wird die Zusammenfassung des Netzes
abzuspeichern.

gibEncoder()

Definiere hier deinen Encoder. Das Modell wird von der Funktion zurückgegeben.

gibDecoder()

Definiere hier deinen Decoder. Das Modell wird von der Funktion zurückgegeben.

[]: import tensorflow as tf

IMG_SHAPE = (128, 128, 3)
NAME = "CNN_medium"

def logSummary(string: str):
with open(f"./daten/modelle/{NAME}/modell.info", "a") as datei:

datei.write(string + "\n")

def gibEncoder():
encoder = tf.keras.Sequential(name='encoder')
encoder.add(tf.keras.layers.Conv2D(32, kernel_size=3, strides=1,�

Òæpadding='same', input_shape=(IMG_SHAPE)))
encoder.add(tf.keras.layers.MaxPooling2D((2,2)))
encoder.add(tf.keras.layers.Conv2D(32, kernel_size=3, strides=1,�

Òæpadding='same'))
encoder.add(tf.keras.layers.MaxPooling2D((2,2)))
encoder.add(tf.keras.layers.Conv2D(64, kernel_size=3, strides=1,�

Òæpadding='same'))
encoder.add(tf.keras.layers.MaxPooling2D((2,2)))
encoder.add(tf.keras.layers.Conv2D(256, kernel_size=3, strides=1,�

Òæpadding='same'))
encoder.add(tf.keras.layers.MaxPooling2D((2,2)))
encoder.add(tf.keras.layers.Flatten())
encoder.add(tf.keras.layers.Dense(256))
encoder.add(tf.keras.layers.Dense((8*8*256)))
encoder.add(tf.keras.layers.Reshape((8, 8, 256)))
encoder.add(tf.keras.layers.Conv2DTranspose(256, kernel_size=5, strides=2,�

Òæpadding='same'))

24

encoder.summary(print_fn=logSummary)
print(encoder.summary())
return encoder

def gibDecoder():
decoder = tf.keras.Sequential(name='decoder')
decoder.add(tf.keras.layers.Conv2DTranspose(64, kernel_size=3, strides=2,�

Òæpadding='same', input_shape=(16,16,256)))
decoder.add(tf.keras.layers.Conv2DTranspose(32, kernel_size=2, strides=2,�

Òæpadding='same'))
decoder.add(tf.keras.layers.Conv2DTranspose(32, kernel_size=3, strides=1,�

Òæpadding='same'))
decoder.add(tf.keras.layers.Conv2DTranspose(3, kernel_size=3, strides=2,�

Òæpadding='same'))

decoder.summary(print_fn=logSummary)
print(decoder.summary())
return decoder

1.2.2 Kombinieren des Encoder und Decoder zu den Autoencodern

[]: def gibAutoencoder(name):
x = tf.keras.layers.Input(shape=IMG_SHAPE, name='input_layer')
encoder, decoder = gibEncoder(), gibDecoder()
autoencoder = tf.keras.Model(x, decoder(encoder(x)), name=name)

print(autoencoder.summary())
return autoencoder

1.2.3 Kompilieren der Modelle mit einem Optimizer

gibKompiliertenAutoencoder(name)

Kombiniert den Encoder und Decoder zu einem Autoencoder und gibt diesen als kom-
piliertes Modell zurück.

[]: OPTIMIZER_FUNKTION = tf.keras.optimizers.Adam(learning_rate=1e-5)
LOSS_FUNKTION = tf.keras.losses.MeanSquaredError()

def gibKompiliertenAutoencoder(name):
autoencoder = gibAutoencoder(name)
autoencoder.compile(optimizer=OPTIMIZER_FUNKTION, loss=LOSS_FUNKTION)

return autoencoder

Falls bereits ein Modell mit dem zuvor definierten Namen exestiert, wird dieses geladen. Ist das
nicht der Fall, wird ein neues Modell erstellt. Anschließend wird zur Übersicht der Fehler-Wert
der Modelle ermittelt.

25

[]: try:
autoencoder_A = tf.keras.models.load_model(f"./daten/modelle/{NAME}/

Òæ{NAME_AUTOENCODER_A}/")
autoencoder_B = tf.keras.models.load_model(f"./daten/modelle/{NAME}/

Òæ{NAME_AUTOENCODER_B}/")
print("Modelle von der Festplatte geladen.\n")

except Exception as e:
print(e)
try:

os.mkdir(f"./daten/modelle/{NAME}/")
os.mkdir(f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_A}/")
os.mkdir(f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_B}/")
os.mkdir(f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_A}/Bilder/")
os.mkdir(f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_B}/Bilder/")

except FileExistsError:
pass

autoencoder_A = gibKompiliertenAutoencoder(name="autoencoder_A")
autoencoder_B = gibKompiliertenAutoencoder(name="autoencoder_B")

loss = autoencoder_A.evaluate(datensatz_gesichter_A_test[:32],�
Òædatensatz_gesichter_A_test[:32])

print(f"Aktueller Loss von A ({NAME_AUTOENCODER_A}): {loss}")

loss = autoencoder_B.evaluate(datensatz_gesichter_B_test[:32],�
Òædatensatz_gesichter_B_test[:32])

print(f"Aktueller Loss von B ({NAME_AUTOENCODER_B}): {loss}")

1.3 Trainieren

1.3.1 Festlegen von Checkpoints für das Trainieren

Hier werden Callbacks definiert, die später Trainingsfunktion übergeben werden. Die Call-
backs enthalten Anweisungen, die während dem Training ausgeführt werden. Hierzu zählt zum
Beispiel das regelmäßige Speichern des Fortschritts.

[]: from tensorflow.keras.callbacks import ModelCheckpoint
import LoggingCallback as lc

autoencoder_A_logging_callback = lc.LoggingCallback(
pfad_modell=f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_A}/",
bild_A=datensatz_gesichter_A_test[1],
bild_B=datensatz_gesichter_B_test[1]

)

26

autoencoder_B_logging_callback = lc.LoggingCallback(
pfad_modell=f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_B}/",
bild_A=datensatz_gesichter_A_test[1],
bild_B=datensatz_gesichter_B_test[1]

)

autoencoder_A_checkpoint_callback = ModelCheckpoint(
f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_A}/",
monitor='val_loss',
save_best_only=True

)

autoencoder_B_checkpoint_callback = ModelCheckpoint(
f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_B}/",
monitor='val_loss',
save_best_only=True

)

1.3.2 Eigentliches Trainieren des Netzes

Nun wird das Modell trainiert. In der dritten Zeile kann die gewünschte Dauer des Trainings
definiert werden. Die beiden Autoencoder werden abwechselnd für jeweils ein Epoche trainiert,
dann wird Encoder zwischen den Modellen getauscht. Dies soll sicherstellen, dass die beiden
Autoencoder die geichen Muster in den Bilder erkennen und somit schlussendlich Bilder fälschen.
Die batch_size bestimmt wie viel Bilder gleichzeitig trainiert werden. Ist dieser Wert zu hoch
kommt es schnell zu einem OOM (Out of Memory, also dem Volllaufen des Arbeitsspeichers)
Error.

[]: import time, gc

ZEITPUNKT_ENDE = time.time() + int(8*60*60)

while time.time() < ZEITPUNKT_ENDE:
print("!- Noch für ~{:.1f}h beschäftigt.".format((ZEITPUNKT_ENDE-time.

Òætime())/3600))

autoencoder_A.fit(
datensatz_gesichter_A_train,
datensatz_gesichter_A_train,
epochs=1,
batch_size=16,
shuffle=True,
validation_data=(datensatz_gesichter_A_test,�

Òædatensatz_gesichter_A_test),
callbacks=[autoencoder_A_checkpoint_callback,�

Òæautoencoder_A_logging_callback]
)

27

autoencoder_B.layers[1] = autoencoder_A.get_layer('encoder')
gc.collect()

autoencoder_B.fit(
datensatz_gesichter_B_train,
datensatz_gesichter_B_train,
epochs=1,
batch_size=16,
shuffle=True,
validation_data=(datensatz_gesichter_B_test,�

Òædatensatz_gesichter_B_test),
callbacks=[autoencoder_B_checkpoint_callback,�

Òæautoencoder_B_logging_callback]
)

autoencoder_A.layers[1] = autoencoder_B.get_layer('encoder')
gc.collect()

1.3.3 Fälschen eines neuen Videos

Nun geht es daran das Gefälschte Video zu erstellen.

Zunächst hat man hier die Möglichkeit eine Vorschau der Leistungsfähigkeit des Modells zu er-
halten.

Wechsle zwischen autoencoder_A und autoencoder_B, um das Modell zur jeweils anderen Person
zu ändern.

Wechsle zwischen datensatz_gesichter_A_test und datensatz_gesichter_B_test, um die Per-
son, deren Gesichter dem Modell übergeben werden zu ändern.

Ändere den Index nach datensatz_gesichter_*_test, um ein anderes Gesicht der Person
auszuwählen.

[]: from matplotlib.pyplot import imshow
%matplotlib inline

img = cv2.cvtColor(autoencoder_A.predict(datensatz_gesichter_A_test[1].
Òæreshape(1, 128, 128, 3))[0], cv2.COLOR_BGR2RGB)

img = cv2.normalize(img, None, 0, 1, cv2.NORM_MINMAX)
imshow(img)

Und abschließend kann hier ein Video gefälscht werden. Ändere auch hier autoencoder_*, um
das Modell zu wechseln.

[]: import Gesichterextrahierer as GE

PFAD_KASKADE = './daten/cascades/haarcascade_frontalface_default.xml'

28

def fake(bild):
bild = bild.astype('float32')
bild /= 255.0
erg = autoencoder_A.predict(bild.reshape(1, 128, 128, 3))[0]
erg = cv2.normalize(erg, None, 0, 255, cv2.NORM_MINMAX)
return erg

g = GE.Gesichterextrahierer(PFAD_KASKADE)
g.lade('./daten/Biden.mp4')
g.fuerGesichterMache(fake, 10000, True)

29

Listing 1: Gesichterextrahierer.py

1 """
2 Ein Skript das sowohl als eigenständiges Programm genutzt werden kann, als auch
3 als Modul importiert werden kann. Ermöglicht das Extrahieren und bearbeiten von
4 Gesichtern in Videos.
5

6 Nutzung als Modul:
7 1. Mit dem Pfad zur Kaskade initalisieren.
8 2. Optional die Bildergröße der Ausgabe mit 'setzeBildergroesse' setzen.
9 3. Video laden mit 'lade'.

10 4. Video mit den anderen Methoden
11 - fürGesichterMache
12 - extrahiereGesichter
13 - extrahiereUndValidiereGesichter
14 bearbeiten.
15

16 Nutzung als Skript:
17 -> Mit Python3 und der '-h' Option starten um die Hilfe angezeigt zu bekommen.
18 """
19 import sys, cv2, time, os
20 import numpy as np
21 import face_recognition
22

23 class Gesichterextrahierer:
24 def __init__(self, pfad_cascade: str):
25 self.CASCADE = cv2.CascadeClassifier(pfad_cascade)
26 self.bildgroesse_output = 128
27 self.counter = 0
28

29 def setzeBildgroesse(self, bildgroesse_output):
30 self.bildgroesse_output = bildgroesse_output
31

32 def lade(self, pfad_video):
33 self.pfad_video = pfad_video
34 self.video = cv2.VideoCapture(pfad_video)
35 self.fps = self.video.get(cv2.CAP_PROP_FPS)
36 self.frame_height = int(self.video.get(cv2.CAP_PROP_FRAME_HEIGHT))
37 self.frame_width = int(self.video.get(cv2.CAP_PROP_FRAME_WIDTH))
38

39 def play(self):
40 """
41 Spielt das geladene Video in einem neuen Fenster ab. Escape beendet die
42 Wiedergabe.
43 """
44 while True:
45 ist_bild, bild = self.video.read() # Nächsten Frame einlesen
46 if cv2.waitKey(1) == 27 or not ist_bild:

30

47 break
48 cv2.imshow('Deepfakeskript - Video', bild)
49 time.sleep(1/self.fps-1)
50 self.video.set(cv2.CAP_PROP_POS_FRAMES, 1) # Video zurücksetzen, damit
51 # es wieder eingelesen werden kann
52 cv2.destroyAllWindows()
53

54 def fuerGesichterMache(self, funktion, max_anzahl_gesichter, speichern=True):
55 """
56 Fürt die übergebene Funktion für alle Gesichter in dem Video aus. Es
57 werden maximal ein Gesicht pro Bild erkannt.
58

59 :funktion: Eine Funktion, der beim Ausführen ein Parameter, der
60 Bildausschnitt des Gesichts, als Liste übergeben wird.
61 Gibt die Funktion False zurück wird das gerade bearbeitete Bild
62 übersprungen.
63 Gibt die Funktion True wird der Counter erhöht und das nächste
64 Bild geladen, sofern nicht das Maximum erreicht wurde.
65 Gibt die Funktion ein Bild als Liste zurück, wird dies anstelle
66 des übergebenen Gesichts in das Bild des Videos eingesetzt. Die
67 Ein- und Ausgabeliste muss die gleiche Form haben.
68 Es kann von der Funktion aus `self.counter` zugegriffen werden,
69 um die Anzahl an bearbeiteten Bildern zu erhalten.
70 :max_anzahl_gesichter: Definiert die Anzahl an Gesichtern, die maximal
71 bearbeitet werden. Die Funktion endet vorzeitig wenn die
72 Videodatei zu Ende ist.
73 :speichern: Bei True wird eine Videodatei abgespeichert, die die
74 mögliche Änderungen beinhaltet.
75 Bei False ist dies nicht der Fall.
76 :return: Gibt die Anzahl an bearbeiteten Bildern zurück.
77 """
78 if speichern: # Vorbereitung für das Abspeichern des neuen Videos
79 pfad_Video_ohne_Endung = ".".join(self.pfad_video.split(".")[:-1])
80 video_writer = cv2.VideoWriter(
81 f'{pfad_Video_ohne_Endung}_geändert.mp4',
82 cv2.VideoWriter_fourcc(*'mp4v'),
83 self.fps,
84 (self.frame_width, self.frame_height)
85)
86

87 ist_bild, bild = self.video.read() # Ersten Frame einlesen
88

89 while ist_bild: # Solange das Video nicht zu Ende ist
90 bild_grau = cv2.cvtColor(bild, cv2.COLOR_BGR2GRAY)
91 gesichter = self.CASCADE.detectMultiScale(
92 bild_grau,
93 scaleFactor=1.3,
94 minNeighbors=5,
95 minSize=(self.bildgroesse_output,)*2

31

96) # Gesichter erkennen
97 if len(gesichter):
98 x, y, breite, hoehe = gesichter[0] # Nur das erste Gesicht
99 gesicht = bild[y:y+hoehe, x:x+breite] # Kopieren des Gesichts

100 gesicht_skaliert = cv2.resize(
101 gesicht,
102 (self.bildgroesse_output,)*2
103)
104 # Die übergebene Funktion ausführen
105 rueckgabe_f = funktion(gesicht_skaliert)
106 if type(rueckgabe_f) == bool and rueckgabe_f == False:
107 break # Mit dem nächsten Frame fortfahren
108 if speichern:
109 if type(rueckgabe_f) != bool:
110 rueckgabe_f = cv2.resize(
111 rueckgabe_f,
112 (breite, hoehe)
113)
114 # Rückgabe der Funktion in das Bild einsetzen
115 bild[y:y+hoehe, x:x+breite] = rueckgabe_f
116 video_writer.write(bild) # Frame an das neue Video anhängen
117 print("\r"+"Es wurden erfolgreich %d Bilder bearbeitet."
118 % self.counter, end='')
119 self.counter += 1
120 elif speichern:
121 video_writer.write(bild) # Frame an das neue Video anhängen
122 # auch wenn kein Gesicht gefunden
123 # wurde
124

125 ist_bild, bild = self.video.read() # Nächsten Frame einlesen
126 if self.counter >= max_anzahl_gesichter:
127 break
128

129 if speichern: video_writer.release()
130 self.video.set(cv2.CAP_PROP_POS_FRAMES, 1) # Video zurücksetzen, damit
131 # es wieder eingelesen
132 # werden kann
133 x = self.counter
134 self.counter = 0
135 return x
136

137

138 def extrahiereGesichter(self, max_anzahl_gesichter: int, ordner_ausgabe: str):
139 """
140 Findet alle Gesichter aus dem Video und speichert sie ab.
141

142 :max_anzahl_gesichter: Definiert die Anzahl an Gesichtern, die maximal
143 bearbeitet werden. Die Funktion endet vorzeitig wenn die
144 Videodatei zu Ende ist.

32

145 :ordner_ausgabe: Den Pfad zum Ordner in dem die Bilder abgespeichert
146 werden, dieser muss vorhanden sein.
147 """
148 def funktion(bild):
149 cv2.imwrite(os.path.join(
150 ordner_ausgabe, f'Gesicht_{self.counter}.png'), bild)
151 return True
152

153 print("Exportiere Bilder nach %s." % ordner_ausgabe)
154 anzahl_extrahierter_bilder = self.fuerGesichterMache(
155 funktion,
156 max_anzahl_gesichter,
157 speichern=False
158)
159 print("\r"+"Es wurden erfolgreich %d Bilder nach %s exportiert."
160 % (anzahl_extrahierter_bilder, ordner_ausgabe))
161

162

163 def extrahiereUndValidiereGesichter(self, referenzbild: list,
164 max_anzahl_gesichter: int, ordner_ausgabe: str, toleranz=0.6):
165 """
166 Findet alle Gesichter aus dem Video und speichert sie ab, falls sie dem
167 Referenzgesicht ausreichend ähneln.
168

169 :referenzbild: Ein Bild in Form einer Liste das zum Vergleich bei der
170 Validierung verwendet wird.
171 :max_anzahl_gesichter: Definiert die Anzahl an Gesichtern, die maximal
172 bearbeitet werden. Die Funktion endet vorzeitig wenn die
173 Videodatei zu Ende ist.
174 :ordner_ausgabe: Den Pfad zum Ordner in dem die Bilder abgespeichert
175 werden, dieser muss vorhanden sein.
176 :toleranz: Die euklidische Distanz, die maximal zwischen den Vekoren,
177 die die zu vergleichenden Gesichter repräsentieren,
178 liegen darf, damit diese als von der gleichen Person gelten.
179 (siehe face_recongnition.compare_faces)
180 """
181 encoding_referenz = face_recognition.face_encodings(referenzbild)
182 def funktion(bild):
183 try:
184 # Gesicht in ein Vektorrepräsentation umwandeln
185 encoding_bild = face_recognition.face_encodings(bild)[0]
186 if face_recognition.compare_faces(encoding_referenz,
187 encoding_bild, tolerance=toleranz)[0]:
188 cv2.imwrite(os.path.join(ordner_ausgabe,
189 f'Gesicht_{self.counter}.png'), bild)
190 return True
191 except Exception: pass
192 return False
193

33

194 print("Validiere und exportiere Bilder nach %s." % ordner_ausgabe)
195 anzahl_extrahierter_bilder = self.fuerGesichterMache(
196 funktion,
197 max_anzahl_gesichter,
198 speichern=False
199)
200 print("\r"+"Es wurden erfolgreich %d Bilder nach %s exportiert."
201 % (anzahl_extrahierter_bilder, ordner_ausgabe))
202

203

204 def main(argv): # Wird ausgeführt, wenn das Skript direkt ausgeführt wird
205 bildgroesse_ausgabe = 128
206 max_anzahl_bilder = 50000
207 pfad_cascade = "./daten/cascades/haarcascade_frontalface_default.xml"
208 ordner_ausgabe = "./daten/Gesichter"
209 pfad_validierungbild = ""
210 toleranz = 0.6
211

212 for index, argument in enumerate(argv):
213 if argument[0] == '-':
214 if 'g' == argument[1]:
215 bildgroesse_ausgabe = int(argv[index+1])
216 elif 'a' == argument[1]:
217 max_anzahl_bilder = int(argv[index+1])
218 elif 'c' == argument[1]:
219 pfad_cascade = argv[index+1]
220 elif 'o' == argument[1]:
221 ordner_ausgabe = argv[index+1]
222 elif 'v' == argument[1]:
223 pfad_validierungbild = argv[index+1]
224 elif 't' == argument[1]:
225 toleranz = float(argv[index+1])
226 elif 'h' == argument[1]:
227 print("Nutzung: %s [Optionen] [Videodatei]\n" % argv[0])
228 print("""Optionen:
229 -g : Größe der Ausgabe Bilder in Pixel
230 -a : Maximale Anzahl der zu extrahierenden Bildern
231 -c : Pfad für die Haarcascade
232 -o : Zielordner für die Ausgabe
233 -h : Drucken dieser Hilfenachricht
234 -v : Pfad zu einem Validierungsbild
235 -t : Toleranz für die Gesichtsvalidierung\n""")
236 return
237

238 g = Gesichterextrahierer(pfad_cascade)
239 g.setzeBildgroesse(bildgroesse_ausgabe)
240 g.lade(argv[-1])
241 if pfad_validierungbild:
242 validierungsbild = cv2.imread(pfad_validierungbild)

34

243 g.extrahiereUndValidiereGesichter(
244 validierungsbild,
245 max_anzahl_bilder,
246 ordner_ausgabe,
247 toleranz=toleranz
248)
249 else:
250 g.extrahiereGesichter(max_anzahl_bilder, ordner_ausgabe)
251

252

253 if __name__ == "__main__":
254 main(sys.argv)

Listing 2: LoggingCallback.py

1 """
2 Die Klasse LoggingCallback, erbt von tensorflow.keras.callbacks.Callback
3

4 Wird als Instanz beim Trianieren mit der fit-Methode als callback übergeben. Die
5 Methoden, welche mit "on_..." beginnen werden zu dem entsprechenden Zeitpunkt
6 wärend des Trainingsprozesses aufgerufen und dokumentieren den Trainings-
7 vortschritt in der Datei 'train.log' im Verzeichnis des Modells. Bei jedem
8 Trainingsbeginn wird ein Gesicht von jeder der beiden Personen durch das Modell
9 geschickt und im Verzeichnis 'Bilder' abgespeichert.

10 """
11

12 import tensorflow.keras.callbacks
13 import time, os, cv2
14 import numpy as np
15

16 class LoggingCallback(tensorflow.keras.callbacks.Callback):
17 def __init__(self, pfad_modell: str, bild_A: list, bild_B: list):
18 self.pfad_modell = pfad_modell
19 self.bild_A = bild_A.reshape(1, 128, 128, 3)
20 self.bild_B = bild_B.reshape(1, 128, 128, 3)
21 try: os.mkdir(os.path.join(self.pfad_modell, 'Bilder/'))
22 except FileExistsError: pass
23

24 def log(self, text: str):
25 with open(os.path.join(self.pfad_modell, 'train.log'), "a") as datei:
26 datei.writelines("{};{}\n".format(time.time(), text))
27

28 def speichereBild(self, bild: list, pfad: str):
29 bild = cv2.normalize(bild,
30 None,

35

31 alpha = 0,
32 beta = 255,
33 norm_type = cv2.NORM_MINMAX,
34 dtype = cv2.CV_32
35)
36 bild = bild.astype(np.uint8)
37 cv2.imwrite(pfad, bild)
38

39 def on_train_begin(self, logs=None):
40 self.log("Starte Training;")
41 predicted_A = self.model.predict(self.bild_A)[0]
42 predicted_B = self.model.predict(self.bild_B)[0]
43 self.speichereBild(
44 predicted_A,
45 os.path.join(self.pfad_modell,
46 "Bilder/{}_Bild_A.png".format(time.time()))
47)
48 self.speichereBild(
49 predicted_B,
50 os.path.join(self.pfad_modell,
51 "Bilder/{}_Bild_B.png".format(time.time()))
52)
53

54 def on_epoch_begin(self, epoch, logs=None):
55 logString = "on_epoch_begin;epoch;{};".format(epoch)
56 for key, val in logs.items():
57 logString += "{};{};".format(key, val)
58 self.log(logString)
59

60 def on_epoch_end(self, epoch, logs=None):
61 logString = "on_epoch_end;epoch;{};".format(epoch)
62 for key, val in logs.items():
63 logString += "{};{};".format(key, val)
64 self.log(logString)
65

66 def on_train_batch_begin(self, batch, logs=None):
67 logString = "on_train_batch_begin;batch;{};".format(batch)
68 for key, val in logs.items():
69 logString += "{};{};".format(key, val)
70 self.log(logString)
71

72 def on_train_batch_end(self, batch, logs=None):
73 logString = "on_train_batch_end;batch;{};".format(batch)
74 for key, val in logs.items():
75 logString += "{};{};".format(key, val)
76 self.log(logString)

36

37

