@ JAKOB FUGGER

GYMNASIUM
Stadtisches Jakob-Fugger-Gymnasium
Qualifikationsphase 2020/2022
Seminararbeit
Thema: Deepfakes im Bereich Fotografie
Verfasser der Seminararbeit: Elias Kohout
Titel des Seminars: Bildgebende Verfahren in der Physik
Seminarleiter: StD Jorg Haas
Abgabetermin: 9.11.2021
Abgegeben am
Abschlussprasentation abgelegt am ..o
Bewertung Note Notenstufe in Worten | Punkte Punkte
schriftliche Arbeit X3
Abschlussprasentation x1
Summe:
Gesamtleistung nach § 29 (7) GSO = Summe:2 (gerundet)

Unterschrift des Seminarl@iters: i rerereens



Inhaltsverzeichnis

1 Einleitung 3
2 Kiinstliche Neuronale Netze 4
2.1 Grundlagen . . . . ..o 4
2.2 Grenzen der herkommlichen Programmierung . . . . . .. .. . . .. 4
2.3 Losungen durch kiinstliche Neuronale Netze . . . . . .. . .. .. .. 5)
2.4 Das kiinstliche Neuron . . . . . . . .. ... ... ... ... ... .. 5
2.5 Aufbau eines kiinstliches Neuronales Netz . . . . . . . . ... ... .. 6

3 Deepfake 7
3.1 Sammeln und Aufbereiten der Daten . . . . . . ... ... ... ... 7
3.1.1 Gesichtserkennung . . . . . ... .. Lo 7

3.1.2  Gesichtsextrahierung . . . . . . . .. ..o 8

3.2 Aufbau des Neuronalen Netz . . . . .. ... ... ... .. ... ... 8
3.2.1 Encoder und Decoder . . . . . . ... ... ... ... ... .. 8

3.2.2 Autoencoder . . . . . . ... 9

3.2.3 Convolutional Neural Networks . . . . . .. .. ... ..... 9

3.3 Trainieren des Netzes . . . . . . . . . . . .. ... ... ... ... 10
3.3.1 Bewertung des Netzes . . . .. .. ... ... ... ...... 11

3.3.2 Der Lernprozess . . . . . . . . ... 12

3.3.3 Versuchsreihe zur Lernrate . . . . . .. .. ... ... .... 13

3.4 Erstellen eines Deepfake Videos . . . . . . . . .. ... .. ... ... 15
3.5 Ergebnisse . . . .. .. 15
3.6 Fazit und Ausblick . . . . ... ... ... ... .. ... 17



1 Einleitung

Technologie bestimmt unser Leben, insbesondere die fortschreitende Digitalisierung
dringt in immer mehr Bereiche unseres Lebens vor und damit geht einher, dass
immer mehr Daten iiber uns gesammelt werden. Riesige Unternehmen wie Google
oder Facebook verdienen Unmengen an Geld mit dem Sammeln und Verarbeiten von
enormen Datenmengen. Dies geht offensichtlich iiber das Erstellen von Diagrammen
hinaus. Ein grofler Bereich der Informatik, welcher von diesen Entwicklungen profi-
tiert, ist der des maschinellen Lernens.

Dies ist insbesondere der Fall, wenn es um kiinstliche Neuronale Netze geht, die
vor allem mit groffen Datenmengen gefiittert werden, um in diesen abstrakte Muster
zu erkennen. Hierbei wird oft die Methode des Deep Learning verwendet. Neuronale
Netze, die diesem Schema entsprechen, kénnen fir zahlreiche Anwendungsaufgaben
verwendet werden, bei denen man mit konventioneller Programmierung nicht weiter
kommt. Solche Netze werden zum Beispiel fiir das Klassifizieren oder Segmentieren
von Bildern, verbesserte Suchergebnisse bei Suchmaschinen, Vorschlige in Sozialen
Medien, dem Erkennen von Gesichtern und vielen weiteren Anwendungen verwendet.
Die Nutzung solcher Netze fiir das Erstellen von Deepfakes ist das Thema dieser
Seminararbeit.

Der Begriff Deepfake wird seit 2017 [Ngu+21] verwendet und hat seit dem fiir
recht viel Aufmerksamkeit gesorgt. Diese Art der Neuronalen Netzen erméglicht es
das Gesicht einer bestimmten Person auf das einer anderen Person in einem Video
zu projizieren und damit theoretisch die projizierte Person alles sagen oder ma-
chen zu lassen. Diese Art des Falschens von Videos ist generell nichts Neues, das
Revolutionére ist die Einfachheit, mit der solche Videos erstellt werden konnen.
Da Programme mit den richtigen kiinstlichen Neuronalen Netzen frei und kostenlos
im Internet zu haben sind, ist nicht mehr notig als ein Computer mit einer han-
delsiiblichen Grafikkarte, Video- oder Bildmaterial der Person und etwas Zeit, um
ein Deepfake-Video zu erstellen.

Dass dies Probleme verursachen kann, ist offensichtlich. Heute kann man in den
meisten Fallen noch erkennen, dass es sich um ein gefilschtes Video handelt, die
Technologie wird jedoch unaufhaltsam besser werden und es wird der Tag kommen,
an dem man mit dem Auge die gefdlschten Videos nicht mehr von den Echten unter-
scheiden kann. Die politischen Gefahren sollten jedem klar sein, aber es geht noch
weiter. Identitatsdiebstahl mit der Hilfe von Deepfakes ist bereits heute ein Problem.
Ein sehr grofler Teil der Deepfakes ist pornografischer Natur und man stelle sich vor
wie leicht man das Leben einer Person durch ein virales Video zur Holle machen
kann. Und was ist mit Videomaterial von Uberwachungskameras, das vor Gericht
standhalten muss und sowieso héufig eine niedrige Auflésung hat, um nur ein paar

Beispiele zu nennen.



Da kommt die Frage auf, wie man dem entgegenwirken kann? Eine Moglichkeit,
und es gibt bereits Anséitze dafiir, wiare Deepfakes mit kiinstlicher Intelligenz zu er-
kennen. Aber bevor man daran arbeiten kann, muss man Deepfakes verstehen und
eine generelle Vorsicht und Skepsis vor dem was man im Internet an Bildern und
Videos sieht, wiirde sicherlich auch helfen. Die folgende Arbeit soll genau das tun,
also ein Verstandnis von der Funktionsweise von Neuronalen Netzen im Allgemeinen,
sowie im Speziellen der Funktionsweise und dem Aufbau eines kiinstlichen Neuro-
nalen Netzes zur Erstellung von Deepfakes auch anhand von praktischen Beispielen

vermitteln.

Begonnen wird mit der Erklirung der grundlegenden Begriffe und Konzepte,
die fiir das Verstandnis des weiteren Verlaufs notig sind. Hierzu zéhlen unter ande-
rem die Funktion und Implementierung eines kiinstlichen Neuron, eines Neuronalen
Netz, sowie die Definition und Erklarung von Convolutional Neural Networks und
Autoencodern. Es folgt die detaillierte Beschreibung des Prozesses der Erstellung
eines kiinstlichen Neuronalen Netzes zur Erstellung von Deepfakes beziehungsweise
die tatsachliche Erstellung eines solchen Deepfake anhand einer selbst konstruierten

Implementierung.

2 Kiinstliche Neuronale Netze

2.1 Grundlagen

Kiunstliche Neuronale Netze (KNN) sind aus der Bionik heraus entstanden. Die
Bionik verbindet Biologie und Technik und ahmt so die Natur und das Leben nach.
Die thematisierte Technologie ist Nervenzellen und dem Gehirn nachempfunden. Im
Folgenden werden nun die Grundlagen von neuronalen Netzen verdeutlicht, dabei
werden teilweise vereinfachte Darstellungen verwendet. Fiir mein Modell verwende
ich eine Bibliothek, also Programmcode, der von jemand anderem zur freien Ver-
wendung zuganglich gemacht wurde, namens TensorFlow, die den eigentlichen Bau
des KNN vereinfacht.

2.2 Grenzen der herkbmmlichen Programmierung

Zunéchst sollte klargestellt werden, warum diese aulergewohnliche Technologie not-
wendig ist. Wenn man sich in der Informatik mit dem Erstellen von Gesichtern
als Bilder befasst, gerdt man mit herkdmmlicher Programmierung schnell an seine
Grenzen. Denn wie bringt man einem Computer bei, was genau ein Gesicht ist? Fiir
uns Menschen ist das Erkennen von Gesichtern intuitiv, da vergisst man leicht, was

fiir eine enorme Leistung das eigentlich ist. Denn kein Gesicht sieht gleich aus und



dennoch erkennen wir sie. Es geht noch weiter, auch bei einem schriagen oder umge-
drehten Gesicht, bei unterschiedlichen Lichtverhaltnissen oder wenn wir uns einen
Smiley anschauen erkennen wird dennoch ein Gesicht. Computer lernen jedoch nicht
wie wir Menschen, man muss ihm ganz konkret definieren, was ein Gesicht ist. Com-
puter speichern alle Daten als Zahlenwerte und fithren nur streng definierte Befehle
aus. Wie sagen wir also einem Computer, was das recht abstrakte Konzept eines
Gesichts ist?

2.3 Losungen durch kiinstliche Neuronale Netze

Bei der Losung orientiert man sich an der Natur und modelliert die Strukturen
im Gehirn. Es wird aus Modellen von Neuronen ein kiinstliches neuronales Netz
konstruiert. Dieses ermoglicht bei richtiger Konfiguration zum Beispiel das Erstellen
von Gesichtern.

Wenn wir versuchen wiirden einem Computer ein Gesicht zu beschreiben, konnten
wir damit anfangen zu sagen, es gibt zwei Augen und einen Mund. Der Computer
weifl aber nicht was das ist, wir miissen also auch ein Auge definieren. Hier kénnte
man anbringen das es sich hierbei, in einem Bild, um Kreise, Ellipsen und ande-
re Geometrische Formen handelt. Diese wiederum werden durch Kanten zwischen
verschiedenen Farben definiert.

Betrachtet man das Innere, also die Funktionsweise, des KNN lasst sich hier ein
dahnlicher Abstraktionsprozess erkennen, sofern das KNN funktioniert also richtig
konfiguriert wurde. Da ein solches Netz viele Millionen Parameter haben kann, wird
die Konfiguration nicht von Hand gemacht, sondern durch einen Algorithmus. Dieser

Prozess wird dann als Lernen bezeichnet.

2.4 Das kiinstliche Neuron

Wie also ist der kleinste Teil des neuronalen Netzes, das kiinstliche Neuron, aufge-
baut? Es handelt sich hierbei nur um eine mathematische Formel, deren Struktur
allerdings einem tatséchlichen biologischen Neuron dhnelt. Man sollte also zunéchst
ein biologisches Neuron verstehen. Im Zentrum steht der Zellkérper, an dem sich
zum Einen die Dendriten und zum Anderen das Axon mit den Synapsen befindet.
Die Dendriten sind quasi die Eingabe des Neuron, hier nimmt das Selbe elektrische
Signale von anderen Neuronen auf. Uberschreitet dabei die Summe der Eingangssi-
gnale einen gewissen Wert, gibt die Zelle selbst ein Signal am Axon ab.

Dieses Prinzip wird nun dhnlich in der Sprache der Mathematik abgebildet und
in der Informatik implementiert. Als Eingabe wird hierbei eine Reihe von Zahlen
verwendet. Diese lassen sich als mehrdimensionaler Vektor darstellen, er wird hier als

Z bezeichnet. Da die Eingabewerte von unterschiedlicher Wichtigkeit sein kénnen,



X

Abbildung 1: Stufenfunktion

werden sie ihrer Bedeutung nach gewichtet. Dazu wird ein weiterer Vektor an Zah-
len, mit der gleichen dimensionalen Grofie wie &, verwendet, der hier @ genannt. Die
Werte von den beiden Vektoren werden nun einzeln miteinander multipliziert und

anschliefend werden die Ergebnisse zu einer Zahl addiert.

I wy
S o | T2 w2
Fog= o = (@1 - w1) + (@2 - wa) + (T3 - w3) + ..

Dies wird auch als Skalarprodukt bezeichnet. Dabei haben Zahlen mit einem grofien
Gewichtungsfaktor einen grofieren Einfluss auf das Ergebnis als Zahlen mit einem
kleineren Gewichtungsfaktor.

Um die Hemmschwelle, die in einem Neuron iiberschritten werden muss, damit
dieses auch ein Signal abgibt, zu implementieren, wird eine mathematische Funkti-
on verwendet. Diese wird Aktivierungsfunktion genannt. Eine sehr simple Variante
ist die Stufenfunktion, die im Falle des Uberschreitens eines Wertes eins ergibt,
andernfalls null [SS20a).

Man ist hier jedoch nicht nur auf diese Funktion beschrinkt. Die beiden Be-
rechnungen lassen sich nun kombinieren und als mathematische Formel ausdriicken.
Hierbei ist f, die Aktivierungsfunktion und y das Ergebnis, welches als Eingabe fiir

das néchste Neuron verwendet werden kann.
fo(@ow) =y

2.5 Aufbau eines kiinstliches Neuronales Netz

Um ein funktionierendes KNN zu erhalten, miissen nun mehrere Neuronen verbun-
den werden. Dies geschieht in Schichten oder Layers. Die erste Schicht nimmt die
Eingabe auf und gibt sie an die néchste Schicht weiter.

In Tensorflow gibt es ein Modul, das sich um die Schichten kiimmert, es heifit

keras.layers. Hier besteht die erste Schicht an Neuronen aus drei kiinstlichen Neu-



ronen und die FEingabe besteht aus drei Zahlenwerten. Die letzte Schicht entspricht

auch gleich der Grofle der Ausgabe, in diesem Fall zwei Zahlenwerte.

modell = tensorflow.keras.Sequential (name='Testmodell')
modell.add(tensorflow.keras.layers.Dense( 3, input_shape=(3,) ))

modell.add(tensorflow.keras.layers.Dense( 2 ))

Dense steht hierbei fiir eine recht haufig verwendete Art von Schicht, bei der
jedes Ergebnis der vorherigen Schicht als Eingabe fiir jedes einzelne Neuron dieser
Schicht verwendet wird. Die Neuronen sind vollstédndig verbunden. Das KNN konnte

man also graphisch so darstellen:

Abbildung 2: Beispielhafte Struktur eines KNN

3 Deepfake

3.1 Sammeln und Aufbereiten der Daten

Damit das KNN die Ergebnisse liefert, die man erwartet, muss man es mit den
richtigen Daten fiittern. Wie genau dieser Prozess, der auch als Training bezeichnet
wird, funktioniert wird noch erldutert. Wichtig ist, es werden zahlreiche, und das
heifit mehrere Tausende oder sogar Zehntausende, Bilder von Gesichter der beiden
Personen, deren Gesichter schlussendlich getauscht werden sollen, benétigt. Man
beschriankt sich hierbei nur auf den Ausschnitt eines Bildes, das Gesicht, um die
Komplexitdt der Aufgabe gering zu halten. Der wohl einfachste Weg viele Bilder zu

finden ist, sie aus einem Video zu extrahieren.

3.1.1 Gesichtserkennung

Wenn man sich dann ein Video zum Beispiel von YouTube heruntergeladen hat, geht
es daran die Gesichter in diesem Video zu erfassen. Hierbei kann auch eine Art des
maschinellen Lernens verwendet werden, welche mit Kaskaden die Gesichter in den
Bilder lokalisiert [VJO1]. Da es dennoch oft schwer ist Videos mit ausschlieBlich einer
Person zu finden, miissen die Gesichter, welche man haben mdochte, noch bestéatigt

werden. Dies wird mit einer Bibliothek namens face_recognition umgesetzt. Dabei

7



wird das gefundene Bild mit einem Bild der gesuchten Person verglichen. Ahneln
sie sich ausreichend kann davon ausgegangen werden, dass es sich um Gesichter der

selben Person handelt.

3.1.2 Gesichtsextrahierung

Fithr man nun dieses Programm aus, wird ein Gesicht in dem Video gefunden und
validiert, anschliefend ausgeschnitten und in einer Datei auf der Festplatte gespei-
chert. Dies wird fiir ein ausreichend langes Video einmal durchgefiihrt damit spéter

darauf zugegriffen werden kann.

3.2 Aufbau des Neuronalen Netz

Damit eine sinnvolle Struktur fiir das KNN erstellt werden kann, muss zunéchst
das Ziel festgelegt werden. Hier ist die Aufgabe das aus dem Gesicht von Person A
das Gesicht von Person B mit dem selben Gesichtsausdruck kreiert wird. Um dies
umzusetzen wird zunéchst das Gesicht von Person A auf verhéltnisméflig wenige
Zahlenwerte reduziert. Diese Werte sollten dann den Gesichtsausdruck widerspie-

geln. Daraus wird dann ein Gesicht von Person B konstruiert.

3.2.1 Encoder und Decoder

Mit dem Encoder werden die Bilder in Zahlenwerte umgewandelt, mit dem Decoder
wird daraus wieder ein Bild konstruiert. Die Zahlenwerte sind von der enthalten
Datenmenge deutlich kleiner als die Bilder selbst, um das KNN zu zwingen, Muster
in den Bildern zu erkennen. Es werden fiir jede Person ein eigener Decoder erstellt
und Trainiert, der Encoder ist jedoch der Gleiche. Dies ist der Fall, um sicherzustel-
len, dass fiir jedes Bild dieselben Muster erkannt und damit die Informationen der

Zahlenwerte fiir jeden der beiden Decoder verstindlich sind.

Reconstructed

Original Encoder Decoder A
Face A Latent Face A
Face A
ﬁ _’ - - — ‘ Q
Original S Reconstructed
Face B Encoder Face B Decoder B Face B

Abbildung 3: Encoder und Decoder




3.2.2 Autoencoder

Zum Trainieren werden der Encoder und Decoder zu einem Autoencoder zusam-
mengefasst. Dieser komprimiert dann ein Bild und versucht es moglichst genau
wieder aufzubauen. Dies wird fiir beide Decoder gemacht. Wenn dann der Zeit-
punkt kommt zu dem man das Gesicht filscht, wird dieses durch den FEncoder
geschickt und anschlieBend mit dem jeweils anderen Decoder wieder rekonstruiert
[DLeaningForDeepF s2f].

2-Pp---¢-a

Original Latent Reconstructed
Face A Encoder Face A Decoder B Face B from A

Abbildung 4: Fdlschen von Gesichtern mit Encoder und Decoder

3.2.3 Convolutional Neural Networks

Bei einem wie zuvor beschrieben simplen KNN muss das Bild zur Eingabe in eine
Liste von Zahlen umgewandelt werden. Hierzu wird jede Reihe des Bildes als ei-
ne Liste von Zahlen tibergeben. Dabei geht jedoch weitestgehend ein Verstandnis
iiber die raumliche Struktur des Bildes verloren. Um dabei Abhilfe zu schaffen kann
man Convolutional Neural Networks verwenden. Diese Art der KNN integriert die
Bildverarbeitung mit Filtermatrizen (eng. convolution matriz).

Filtermatrizen werden in der Bildverarbeitung dazu verwendet, zahlreiche Effek-
te auf Bilder anzuwenden. Es handelt sich hierbei um simple Filter wie zum Beispiel
Blur oder Kantenerkennung. Der Funktion dieser liegt dabei eine Zahlenmatrix zu-

grunde, welche beliebig grof3 sein kann, wobei sie jedoch kleiner als das Bild sein

sollte.
+1] 0 |-1
42/ 0 |-2
+1| 0 |-1

Abbildung 5: Beispielhafte Filtermatriz

Diese Matrix — nehmen wir in diesem Beispiel an, sie hat ein Groflie von 3x3 —
wird dann auf ein zu verarbeitendes Bild gelegt, sodass neun Pixel bedeckt werden.
Nun wird jeder Wert der Matrix mit dem darunterliegenden Wert des Pixel mul-
tipliziert. Alle diese Produkte werden addiert und das Ergebnis ist der Pixelwert
des Ergebnisbildes an dieser Stelle. Anschliefend ist es noch sinnvoll das Bild zu
normalisieren, um negative oder zu grofle Zahlenwerte fiir die Pixel zu verhindern.

Diese Schritte werden fiir das gesamte Bild durchgefiihrt bis ein fast gleichgrofles

9



gefiltertes Bild entsteht. Je nachdem wie man die Filtermatrix konfiguriert lassen,
sich andere Effekte erzielen. Die in Abbildung 5 dargestellt Matrix stellt vertika-
le Kanten heraus. Dies sieht dann, wenn es auf ein Bild angewendet wird, wie in
Abbildung 6 aus.

Abbildung 6: Effekt der Filtermatrix

Dieses Verfahren eignet sich duflerst gut, um Strukturen in Bilder zu erkennen,
weshalb es auch fiir Deepfakes in den Convolutional Neural Networks Verwendung
findet. Beim Decoder wird der gesamte Prozess mehr oder weniger umgedreht um
Strukturen aufzubauen. Wenn man ein solches Netz trainiert ldsst man den Com-
puter dariiber entscheiden welche Werte fiir die Filtermatrizen ausgewahlt werden.
Betrachtet man ein einfach verkniipftes KNN von innen, sieht dies sehr chaotisch
aus. Abbildung 7 stellt genau das dar, dunkle Pixel sind negative Werte, graue Pixel
entsprechen Werten nahe Null und Weifle Pixel sind grofie positive Werte.

Obwohl es theoretisch Muster in den Bildern erkennen sollte, geschieht dies auf
eine so komplexe Art und Weise, dass es fir uns Menschen vollig unverstandlich ist.
Es funktioniert, ist aber sicherlich nicht sehr effizient.

Betrachtet man, was mit Bildern geschieht, wenn sie von einem Convolutional

Neural Network verarbeitet werden, erscheint dies deutlich strukturierter.

3.3 Trainieren des Netzes

Zum Verbessern der Leistung des Netzes wird es mit Bildern gefiittert. Zu jedem
Bild wird zur Uberpriifung auch das erwartete Bild mitgeliefert, quasi die Losung.
Im diesem Fall, da es sich um einen Autoencoder handelt, sind beide Bilder das

Selbe. Allgemeinen sei noch erwdhnt, dass das gesamte kiinstliche Neuronale Netz

10



mathematisch als Funktion beschriebenen werden kann, die fiir jedes Gewicht im

Netz ein Parameter hat.

3.3.1 Bewertung des Netzes

Damit das kiinstliche Neuronale Netz trainiert, also in seiner Funktion verbessert
werden kann, muss es zundchst bewertet werden. Dies wird mit einem errechneten
Wert namens Fehler oder Loss umgesetzt. Der Loss wird mit einer Funktion berech-
net, die variiert werden kann. In dem hier beschriebenen Fall wird eine Funktion
namens Mean Squared Error [Goo2la] verwendet. Die eben genannte Funktion ver-
gleicht das Ergebnis des KNN mit den erwarteten Werten und beurteilt wie sehr
diese beiden sich dhneln. Fiir ein besseres Verstandnis hier ein Beispiel. Stellen wir
uns, vor wir haben ein KNN mit einem Neuron und zwei Parametern, einem Ein-
gabewert und einem Ausgabewert und es wird versucht Hauspreise auf Basis der
Anzahl der Fenster zu bestimmen. Wir haben also als Eingabe die Anzahl der Fens-
ter und als Ausgabe den Hauspreis in 100.000€. Die Daten zu den Hausern kénnen

in einem Diagramm wie in Abbildung 8 dargestellt werden.

Abbildung 8: Beispiel Hauspreisanalyse (erfundene Daten)
14
12 |
10 |

Hauser X

X X
L X X X

Preis (in 100.000€)

o N b O
T

5 6 7 8 9 10 11 12 13
Anzahl der Fenster

Das Neuron kann mit seinen zwei Parametern, wovon einer als Bias nur addiert
wird, als lineare Funktion in dem Format f(z) = wy-x+w, dargestellt werden. Es ist
nun das Ziel des Lernalgorithmus die Gewichte w; und ws so anzupassen, dass das
Neuron eine moglichst genaue Aussage tiber die Hauspreise machen kann. Zu Beginn
wird das Neuron mit zufélligen Werten initialisiert, nehmen wir beispielsweise die
Werte wy = 0,9 und wy = —3 wie es auf der linken Seite von Abbildung 9 dargestellt
wird. Der Fehler wird nun aus der Differenz des tatsidchlichen Hauspreises und dem
mit dem Neuron errechneten Wert gebildet. Um bei der Subtraktion der beiden
Werte keine Negative Ergebnisse zu erhalten und grofie Abweichungen starker zu
gewichten wird der Wert quadriert.

Da mit mehreren Werten gerechnet wird, wird anschliefend der Durchschnitt
gebildet. Der Fehler-Wert der linke Funktion in Abbildung 9 lasst sich also so be-

rechnen:

11



Abbildung 9: Beispiel Hauspreisanalyse mit Funktionen

14 14
12

10

Hauser X

12 0.2%x+1.7 ——
Abweichung —s—

10
8

Preis (in 100.000€)

Preis (in 100.000€)

o N & o
o N B o

. L . L 1 \ ) . . . L . L . )
5 6 7 8 9 10 11 12 13 5 6 7 8 9 10 11 12 13
Anzahl der Fenster Anzahl der Fenster

(f(6) =12 +...+(f(12) —2,5)°
7

7,3

Die Funktion g(z) = 0,2z + 1,7 auf der rechten Seite von Abbildung 9 hat einen
Fehler-Wert von nur ungefahr 2,8 und ist damit deutlich akkurater als die zuvor
dargestellte Funktion.

Weas hier fiir jedes Haus gemacht wurde, wird bei dem Deepfake KNN mit jedem
Bild gemacht.

Das Neuronale Netz ist also um so besser, je niedriger der Fehler-Wert ist.

3.3.2 Der Lernprozess

Der in Kapitel 3.3.1 beschriebene Prozess des Findens von dem Fehler-Wert kann
auch als Funktion beschrieben werden. Und da das KNN fiir jede Kombination von
Werten fiir die Parameter einen Fehler-Wert hat, kann man diese Fehlerfunktion
auch graphisch darstellen. Dies wird moglich indem man den Fehler fiir alle Kom-
binationen berechnet. Fiir das obige Beispiel mit zwei Parametern ist dies noch
moglich, man erhélt einen dreidimensionalen Graphen. Es ist nun das Ziel des Ler-
nens, ein Minimum in der Fehlerfunktion zu finden. Es wére jedoch ineffizient eine
Grofizahl von Fehler-Werten wahllos zu ermitteln und sich das Beste auszusuchen.
Deshalb wird fiir einen Fehler-Wert die Steigung der Fehlerfunktion in diesem Punkt
berechnet. Mit der lokalen Ableitung kann die Richtung und Stérke bestimmt wer-
den, mit der der Parameter, bzw. die Gewichtung w verédndert werden muss, um
einem Minimum ndher zu kommen. Dabei wird fiir jeden Parameter eine partielle
Ableitung bestimmt. Der Parameter wird dann um den Wert der Steigung g re-
duziert. Um hier nun noch ein bisschen mehr Kontrolle iber die Geschwindigkeit
der Anderungen zu haben wird der Wert der Steigung noch mit der zuvor festge-
legten Lernrate L multipliziert [SS20b]. Dieser Prozess wird fir jeden Lernschritt

wiederholt.

Wney = Wait — L. g

Dieser Prozess des Andern der Gewichte ist die Aufgabe des Optimizers, welcher

12



auch frei wahlbar ist. Der wohl Simpelste, der auflerdem nach der oben beschriebenen
Formel funktioniert, heifit Stochastic Gradient Descent (SGD) [Goo2lc].

3.3.3 Versuchsreihe zur Lernrate

Bei dem Erstellen eines KNN kann an zahlreiche Stellschrauben gedreht werden.
Sehr wichtig fiir erfolgreiches Trainieren des Netzes ist die Lernrate. Um den Einfluss
dieser zu demonstrieren und schlussendlich einen Wert in der richtigen Gréflenordnung

zu wahlen, wurde eine Versuchsreihe mit verschieden Lernraten und Optimizern

durchgefithrt. Hierzu wurde folgendes Modell verwendet.

Schichttyp | Eingabeform | Ausgabeform | Parameter
Reshape 120, 120, 3 43200 0

Dense 43200 500 21600500
Dense 500 100 50500
Dense 100 500 50500
Dense 500 43200 21643200
Reshape 43200 120, 120, 3 0

Tabelle 1: Struktur des Modells zu der Versuchsreihe zur Lernrate

In der ersten Spalte von Tabelle 1 wird angegeben, um was fiir eine Art von
Schicht es sich handelt. Die zweite Spalte gibt an in welchem Format und zu welcher
Anzahl die verschiedene Datenpunkte an die jeweilige Schicht iibergeben werden.
Steht nur eine Zahl in der Tabelle wird der Schicht eine simple eindimensionale
Liste an Zahlen iibergeben. Da ein Bild jedoch mehrdimensional ist, in diesem Fall
120 Pixelwerte in x-Richtung, 120 Pixelwerte in y-Richtung und zu jedem Pixel
3 Farbwerte, finden sich als Ein- und Ausgabe des gesamten Netzes jeweils drei
Werte. Dies ist auch der Grund, warum zum Beginn und Ende eine Reshape-Schicht
also Umformungsschicht steht, die aus den dreidimensionalen Werten des Bildes eine
einfache Liste an Werten macht beziehungsweise am Ende andersherum. Das Modell
besteht hier aus zwei Teilen, dem FEncoder, der die ersten drei Schichten ausmacht,
und dem Decoder der aus den letzten drei Schichten besteht.

Das Modell wurde nun mit dem SGD-Optimizer und verschiedenen Lernraten
fiir jeweils sechs Stunden trainiert. Da effektiv zwei Decoder trainiert werden sind
die angegeben Daten iiber einen Zeitraum von ungefihr drei Stunden. Folgende
Lernraten wurden ausprobiert.

Die in Tabelle 2 angegebene Epoche ist quasi eine Lerneinheit, diese unterschei-
den sich leicht, da die Modelle fiir eine bestimmte Zeit trainiert wurden. Es ist bereits
zu beobachten, dass je grofler die Lernrate ist desto geringer ist auch der Fehler. Dies
wird besonders deutlicher, wenn man den Wert des Fehler tiber die Trainingszeit als
Diagramm (Abbildung 10) darstellt.

Man kann auBerdem erkennen, dass sich der Fehler bei der Lernrate 1075 iiberhaupt

13



Lernrate | Epochen | min. Fehler | max. Fehler | @ Fehler
1-1071 6520 0.0037 0.3261 0.0055
1-1072 6150 0.0082 0.3361 0.0120
1-1073 5930 0.0166 0.3419 0.0288
1-1074 5019 0.0172 0.3418 0.1589
1-107° 6033 0.3356 0.3458 0.3367

Tabelle 2: Fehlerwerte bei verschiedenen Lernraten, SGD (gerundete Werte)

TE

Fehler

0.001

Abbildung 10: Fehler fiir verschiedene Lernraten, SGD

Ir=1x107" e

Ir=1x10"2
lr=1x1073
Ir=1x10"
Ir=1x107°
0.01 F Q
1 L L 1 L L 1 ]
0 0.5 15 2 2.5 3 3.5 4

Trainingzeit in Stunden

nicht mehr verbessert. Wenn man die Lernrate also senkt scheint es einen Wert zu

geben, ab dem der Lernalgorithmus unbrauchbar wird und sich das Modell nicht

verbessert. Erhoht man die Lernrate stetig, findet sich auch eine Grenze ab der das

Lernen nicht mehr effektiv ist. Wird versucht das Modell mit einer Lernrate von

0,5 zu trainieren, steigt der Fehler duflerst schnell in absurde Hohen an. Dieser hier
extreme Effekt wird als Querfitting [NNPython:Overfitting] bezeichnet und ent-

steht indem man mit zu groflen Schritten tiber das Minimum der Fehler-Funktion

hinausschiet. Dies wird noch deutlicher, wenn man sich einen Alternativen Opti-

mizer, namens Adam [Goo21b; SS20c], anschaut. Dieser ist einer der am haufigsten

verwendeten Optimizer. Er wurde auf die gleiche Modellstruktur aus Tabelle 1 mit

verschiedenen Lernraten angewandt.

Lernrate | Epochen | min. Fehler | max. Fehler | @ Fehler
1-1073 7450 0.0019 1094034.7500 | 195.1310
1-10* 7499 0.0015 0.1098 0.0017
5-107° 7341 0.0015 0.0526 0.0016
1-107° 6649 0.0015 0.1159 0.0017
5-1076 6212 0.0015 0.2405 0.0019
1-10°¢ 4213 0.0021 0.3315 0.0044
1-1077 3805 0.0061 0.3392 0.0138

Tabelle 3: Fehlerwerte bei verschiedenen Lernraten, Adam (gerundete Werte)

14



Abbildung 11: Fehler fiir verschiedene Lernraten, Adam

[r=1x107> e 1x10° |r=1x10:z —
0 [r=1x1070 e [r=5x10
lr=1x1077
10000
Ir=5x10"°
— S
9] 2
< < 100
> >
]

0.01

0.001 1 1 ~¢|— - 17 1 ] :
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3

Trainingzeit in Stunden Trainingzeit in Stunden

Auch hier wird deutlich, das Modell lernt schneller, wenn die Lernrate grofler
ist. Wird die Lernrate jedoch gréfer als ungefihr 1075 fingt die Kurve (Abbildung
11) an unregelméafBig zu werden, bis sie anfiangt extrem zu fluktuieren und damit
nicht mehr effektiv am lernen ist. Wahlt man die Lernrate jedoch zu klein, mit
dem Gedanken Owerfitting zu vermeiden, lernt das Modell deutlich langsamer. Die

richtige Wahl der Lernrate ist also essenziell fiir das erfolgreiche Trainieren eines
KNN.

3.4 [Erstellen eines Deepfake Videos

Nun da das KNN trainiert wurde, bleib nur noch das eigentliche Deepfake Video
zu erstellen. Das ist jetzt recht einfach, aus dem zu fialschenden Video werden die
Gesichter extrahiert, vom Encoder eingelesen und von dem jeweils Anderen Decoder
zu einem neuen Gesicht aufgebaut. Dieses Gesicht wird an der Gleichen Stelle wieder

ins Video eingefiigt und fertig ist das Deepfake Video.

3.5 Ergebnisse

Was jetzt recht simple klang, ist in der tatséchlichen Umsetzung deutlich schwerer.
Die Schwierigkeit liegt dabei in der Festlegung der richtigen Struktur des KNN.
Hierbei funktioniert die Umsetzung des Autoencoder sehr gut, das Problem liegt in
dem Umwandeln der Bilder. Schlussendlich habe ich das beste Ergebnis mit einem
Convolutional Neural Network, dessen Ergebnisse man in Abbildung 12 und 13 sieht,
erhalten.
Die Ergebnisse sind verbesserungswiirdig, und ohne gravierende strukturelle Anderungen

im KNN scheinen es, dass auch keine besseren Ergebnisse moglich sind. Auch langes
Trainieren ist da nicht die Losung. Nach ein paar Stunden wird ein Minimum erreicht
und das KNN verbessert sich nicht mehr. Das konnte man sehr gut in Kapitel 3.3.3
beobachten, betrachtet man das linke Diagramm in Abbildung 11 kann man erken-

nen, dass der Fehler-Wert nie unter 0,0015 féllt. Dies wird sich auch nicht éndern,

15



Abbildung 12: Links: Fingabebild, Mitte: Mit dem Autoencoder erstellt, Rechts: Als
Biden rekontruiert

Abbildung 13: Links: FEingabebild, Mitte: Mit dem Autoencoder erstellt, Rechts: Als
Trump rekonstruiert

wenn das KNN noch langer trainiert wird. Dies war zumindest bei den Netzen, die
im Zuge dieser Arbeit konstruiert wurden der Fall.

Groflere Netze sind auch nur begrenzt moglich. Die benétigte Menge an Ar-
beitsspeicher, sowohl vom Prozessor als auch von der Grafikkarte, iiberschreitet
schnell die handelsiiblichen wenigen Gigabyte. Auflerdem dauert das Trainieren pro
Epoche deutlich langer. Und wie man den Abbildungen 14 und 15 sieht, hat dies
auch keinen mafigeblichen Vorteil. Und das obwohl das Netz, mit dem die unteren
Bilder erstellt wurden, mit rund 12 Millionen mehr als doppelt so viele Parameter
hat, wie das Netz von den Abbildungen 12 und 13.

Abbildung 14: Links: Fingabebild, Mitte: Mit dem Autoencoder erstellt, Rechts: Als
Biden rekonstruiert

Abbildung 15: Links: Fingabebild, Mitte: Mit dem Autoencoder erstellt, Rechts: Als
Trump rekonstruiert

16



Im Vergleich zu einem einfach verkniipften KNN kann man jedoch Verbesserun-
gen erkennen. In Abbildung 16 sieht man Gesichter, die mit einem gréfieren einfach
verkniipften KNN erstellt wurden. Es wurde hierbei versucht aus dem Gesicht von

Biden, das von Chuck Norris zu machen.

Abbildung 16: Ergebnisse eines einfach verknipften KNN
)

w

3.6 Fazit und Ausblick

Auch wenn mein KNN zur Erstellung von Deepfakes niemanden tauschen wird, gibt
es deutlich fortgeschrittenere Werkzeuge mit denen sich tduschend echte gefilschte
Videos erstellen lassen. Doch man sollte die Gefahr, die mit dieser Technologie ein-
hergeht nicht unterschétzen. Potente Programme zur Erstellung von Deepfakes sind
leicht zuganglich und durch soziale Medien kénnen sich Falschinformation duflerst
schnell verbreiten. In der Zukunft werden Deepfakes immer besser werden, bis zu dem
Punkt wo wir sie als Menschen nicht mehr von echten Videos unterscheiden konnen.
Wir miissen uns also iiberlegen wie man damit umgehen sollte. Es gibt zwar den
Ansatz mit Maschinellem Lernen Deepfakes zu erkennen, allerdings sind wir noch
weit davon entfernt, dies auf die groflen Mengen an Video- und Bildmaterial, das
wir konsumieren, anzuwenden. Es bleibt also die Frage, ob wir den Quellen, aus de-
nen wir unsere Informationen beziehen, trauen konnen? Ich denke stellen uns diese
Frage viel zu selten, obwohl die Antwort haufig Nein heifit. Nie von Falschinforma-
tion getduscht zu werden, ist unmoglich, aber durch kritisches und hinterfragendes
Denken kann der Grofiteil entlarvt werden. Also fangen wir doch an, uns haufiger

zu fragen, kann das wirklich wahr sein?

17



Literaturverzeichnis

[Goo2la]  Google. tf.keras.losses. MeanSquaredError. 2021. URL: https: //www .
tensorflow.org/api_docs/python/tf/keras/losses/MeanSquaredError.

[Goo21b]  Google. tf.keras.optimizers. Adam. 2021. URL: https://wuw.tensorflow.
org/api_docs/python/tf/keras/optimizers/Adam.

[Goo2lc]  Google. tf.keras.optimizers.SGD. 2021. URL: https://www.tensorflow.
org/api_docs/python/tf/keras/optimizers/SGD.

[Ngu+21] Thanh Thi Nguyen u.a. Deep Learning for Deepfakes Creation andDe-
tection: A Survey, Seite 1. 26. Apr. 2021. URL: https://arxiv.org/
pdf/1909.11573.pdf (besucht am 18.06.2021).

[SS20a] Joachim Steinwendner und Roland Schwaiger. Neuronale Netze program-
mieren mit Python. 2. Aufl. Bonn: Reihnwerk Computing, 2020, S. 31—
36.

[SS20b] Joachim Steinwendner und Roland Schwaiger. Neuronale Netze program-
mieren mit Python. 2. Aufl. Bonn: Reihnwerk Computing, 2020, S. 126—
128.

[SS20c] Joachim Steinwendner und Roland Schwaiger. Neuronale Netze program-
mieren mit Python. 2. Aufl. Bonn: Reihnwerk Computing, 2020, S. 214—
216.

[VJO1] Paul Viola und Michael Jones. Rapid Object Detection using a Boosted
Cascade of Simple Features. 2001. URL: https://www.cs.cmu. edu/

~efros/courses/LBMV07 /Papers/viola-cvpr-01.pdf (besucht am
18.06.2021).

18



Abbildungsverzeichnis

1

10

11

12

13

14

15

16

Stufenfunktion,

Quelle: eigene Darstellung . . . . . . . . .. ... ... ... ... 6
Beispielhafte Struktur eines KNN,

Quelle: https://en.wikipedia.org/wiki/File:Multi-LayerNeuralNetwork-

Vector-Blank.svg . . . . ... oo 7
Encoder und Decoder,

Quelle: https://arxiv.org/pdf/1909.11573.pdf . . . . . . ... ... .. 8
Féalschen von Gesichter mit Encoder und Decoder,

Quelle: https://arxiv.org/pdf/1909.11573.pdf . . . . . . . .. ... .. 9
Beispielhafte Filtermatrix,

Quelle: eigene Darstellung . . . . . .. ... ... ... 9
Effekt der Filtermatrix,

Quelle: eigene Darstellung . . . . . . . ... .. ... ... 10
Gewichtungen von Neuronen der vier Schichten eines Autoencoder,
Quelle: eigene Darstellung . . . . . . .. ... ... ... ... ... 10
Beispiel Hauspreisanalyse (erfundene Daten),

Quelle: eigene Darstellung . . . . . . . ... . ... . L. 11
Beispiel Hauspreisanalyse mit Funktionen,

Quelle: eigene Darstellung . . . . . .. . ... ... oL 12
Fehler fiir verschiedene Lernraten, SGD,

Quelle: eigene Darstellung . . . . . . . ... ... L. 14
Fehler fiir verschiedene Lernraten, Adam,

Quelle: eigene Darstellung . . . . . . . ... ... ... .. 15
Ergebnis CNN (Trump als Eingabe),

Quelle: eigene Darstellung . . . . . . . . ... ... ... ... ... 16
Beispielhaftes Ergebnis (Biden als Eingabe),

Quelle: eigene Darstellung . . . . . ... ... ... 16
Ergebnis CNN grof3 (Trump als Eingabe),

Quelle: eigene Darstellung . . . . . .. . ... ... L. 16
Ergebnis CNN grofl (Biden als Eingabe),

Quelle: eigene Darstellung . . . . . .. .. ... ... 16

Ergebnisse eines einfach verkniipften KNN,

Quelle: eigene Darstellung . . . . . . . ... ... ... ... 17

19



Quellcode-Dateien zur Implementierung

1 Deepfake.ipynb . . . . . ...
2 Gesichterextrahierer.py . . . . . . . . . . ...
3 LoggingCallback.py . . . . . . . . . . . ... .. ... ..

20



[]:

1 Neuronales Netz zum erstellen eines Deepfakes

Dieses Dokument ermoglicht Dir, ein Deepfake-Video zu erstellen, wiaren Du tiber die Funktion
und den Aufbau des dazu verwendeten kiinstlichen Neuronalen Netzes lernst.

Das folgende Dokument setzt sich aus folgenden Schritten zusammen:
1. Einlesen und Aufbereiten von den Daten zum Trainieren

e Extrahieren von Gesichter aus einem Video
¢ FEinlesen dieser Daten

2. Initialisieren des kiinstlichen Neuronalen Netzes

¢ Definieren der Struktur des Encoder und Decoder
¢ Kombinieren des Encoder und Decoder zu den Autoencodern
¢ Kompilieren der Modelle mit einem Optimizer

3. Trainieren

¢ Festlegen von Checkpoints fiir das Trainieren
¢ Eigentliches Trainieren des Netzes

4. Filschen eines neuen Videos

1.1 Einlesen und Aufbereiten von den Daten zum Trainieren

Um dem kiinstlichen Neuronalen Netz beizubringen Gesichter zu erkennen und zu erstellen, wer-
den zahlreiche Bilder von Gesichtern benétigt. Im Fall von Deepfakes ist Bildmaterial von zwei
Personen notig. Einfachheitshalber wird als Input Videomaterial verwendet.

1.1.1 Extrahieren von Gesichter aus einem Video

In den Variablen PFAD_A und PFAD_B werden die Pfade zu den Videos gespeichert, die dazu
verwendet werden Bilder von zwei Personen zu erxtrahieren. Es werden mit der Hilfe der Klasse
Gesichterextrahierer, die in einer externen Datei definiert wurde, die Gesichter aus den Videos
extrahiert. Die Bilder werden in einem Verzeichnis gespeichert.

import Gesichterextrahierer as GE

PFAD_A = './daten/videomaterial/Joe_Biden/nur_joe_biden_gemischt.mp4'
PFAD_B = './daten/videomaterial/Chuck_Norris/nur_Chuck_Norris_gemischt.mp4'
PFAD_KASKADE = './daten/cascades/haarcascade_frontalface_default.xml'

g = GE.Gesichterextrahierer (PFAD_KASKADE)
g.lade (PFAD_A)
g.extrahiereGesichter (

21



max_anzahl_bilder=3000,
ordner_ausgabe="'./daten/lernen/Gesichter/A'
)
g.lade (PFAD_B)
g.extrahiereGesichter (
max_anzahl_bilder=3000,
ordner_ausgabe='./daten/lernen/Gesichter/B'

del PFAD_A, PFAD_B, PFAD_KASKADE, g, GE

1.1.2 Einlesen der Bilddateien

Dass die Bilder als Datei gespeichert wurden, erspart uns beim nichsten Mal den vorherigen
Schritt. Die Dateien miissen nun allerdings wieder ins Programm geladen werden.

erstelleDatensatz(pfad: str) -> list[list]

Ladt alle Bilder in dem iibergebenen Verzeichnis in zwei Datensitze und gibt diese als
Liste zuriick. Jeder Pixelwert wird durch 255 geteilt, um die Werte auf den Bereich
zwischen 0 und 1 zu projektieren. Dies stellt sicher, dass die Werte des kiinstlischen
Neuronale Netzes (KNN), wenn das Bild iibergeben wird, nicht zu grofs werden. Die
Bilder werden in zwei Datensédtze umgewandelt, zu 75% zum Trainieren des KNN und
zu 25% zum Priifen und Bewerten der Leistung des Netzes.

teileListe(liste: list, verteilung: float) -> list[list]

Teilt die tibergebene Liste in zwei Listen und gibt diese zurtick. Die erste zurtick-
gegebene Liste hat ein Lange von n-% der tibergebenen Liste, wobei 1 als Kommazahl
zwischen 1 und 0 mit verteilung iibergeben wird.

verzerren(bild: list, staerke: int) -> 'Bild'

Gibt eine verzerrte Version des iibergebene Bild, als wiirde man das Bild von weiter
rechts betrachten. Die stirke (eine ganze Z)

import numpy as np
import cv2
import os

def erstelleDatensatz(pfad: str, anzahl: int) -> list:
bilder = []
for wurzel, ordner, dateien in os.walk(pfad):
dateien = [e for e in dateien if e.split(".")[-1].lower() in ['png',.
~'jpg's 'jpeg'l]
dateien = dateien[:int(anzahl/4)]
for datei in dateien:
bild = cv2.imread(os.path.join(wurzel, datei))
bild = bild.astype('float32')
bild /= 255.0

22



[]:

for e in [bild, np.fliplr(bild), verzerren(bild, 10), np.
wfliplr(verzerren(bild, 10))]:
bilder.append (e)
if len(bilder) >= anzahl: break

np.random. shuffle(bilder)

bilder_train, bilder_test = teilelListe(bilder, 0.75)

bilder_train, bilder_test = np.array(bilder_train), np.array(bilder_test)
print('%d Bilder aus %s geladen.' 7 (len(bilder), pfad))

return [bilder_train, bilder_test]

def teileliste(liste: list, verteilung: float) -> list:
x = int(len(liste)*verteilung)
return [liste[:x], liste[x:]]

def verzerren(bild: list, staerke: int) -> list:
hoehe, breite = bild.shape[0:2]
punkte_von = np.float32([[0, 0], [0, hoehe], [breite, 0], [breite, hoehel])
punkte_nach = np.float32([[0, staerke], [0, hoehe-staerke], [breite, 0],

< [breite, hoehell])

matrix = cv2.getPerspectiveTransform(punkte_von, punkte_nach)
bild_verzerrt = cv2.warpPerspective(bild, matrix, (breite, hoehe))
bild_verzerrt = bild_verzerrt[staerke:hoehe-staerke, staerke:breite-staerke]
return cv2.resize(bild_verzerrt, (breite, hoehe))

datensatz_gesichter_A_train, datensatz_gesichter_A_test =,
—erstelleDatensatz('daten/lernen/Gesichter/A', 5000)
NAME_AUTOENCODER_A = 'Biden'

datensatz_gesichter_B_train, datensatz_gesichter_B_test =,

—erstelleDatensatz('daten/lernen/Gesichter/B', 5000)
NAME_AUTOENCODER_B = 'Trump'

1.1.3 Um zu priifen, ob die Bilder korrekt geladen wurden

from matplotlib.pyplot import imshow
Jmatplotlib inline

imshow(cv2.cvtColor(datensatz_gesichter_A_test[4], cv2.COLOR_BGR2RGB))

del imshow

1.2 Initialisieren des Neuronalen Netzes

23



[]:

Nun wird das kiinstlichen Neuronale Netz initialisiert. Dazu wird die Struktur des Netzes
definiert und das Modell anschlieflend kompiliert.

1.2.1 Definieren der Struktur des Encoder und Decoder

Der NAME wird als Idenetifikation und zum Abspeichern verwendet.

logSummary(string: str)

Die Funktion, die spédter dazu verwendet wird die Zusammenfassung des Netzes

abzuspeichern.

gibEncoder ()

Definiere hier deinen Encoder. Das Modell wird von der Funktion zurtickgegeben.

gibDecoder ()

Definiere hier deinen Decoder. Das Modell wird von der Funktion zuriickgegeben.

import tensorflow as tf

IMG_SHAPE = (128, 128, 3)

NAME = "CNN_medium"

def logSummary(string: str):
with open(f"./daten/modelle/{NAME}/modell.info", "a") as datei:
datei.write(string + "\n")

def gibEncoder():

encoder = tf.keras.Sequential (name='encoder"')
encoder.add (tf.keras.layers.Conv2D(32, kernel_size=3, strides=1,,
—padding="'same', input_shape=( IMG_SHAPE ) ))

encoder.add(tf.keras

encoder.add(tf .keras.

—padding="'same'))

encoder.add(tf .keras.
encoder.add(tf.keras.

—padding="'same'))

encoder.add(tf.keras.
encoder.add(tf.keras.

—padding='same'))

encoder.add(tf .keras.
encoder.add(tf.keras.
encoder.add(tf.keras.
encoder.add (tf.keras.
encoder.add(tf.keras.
encoder.add(tf.keras.

—~padding="'same'))

.layers.
layers.

layers
layers.

layers
layers.

layers
layers
layers
layers
layers
layers.

MaxPooling2D((2,2)))
Conv2D (32, kernel_size=3, strides=1,,

.MaxPooling2D((2,2)))

Conv2D (64, kernel_size=3, strides=1,,,

.MaxPooling2D((2,2)))

Conv2D (256, kernel_size=3, strides=1,,

.MaxPooling2D((2,2)))
.Flatten())

.Dense( 256 ))

.Dense( (8*8%256)))
.Reshape( (8, 8, 256) ))

Conv2DTranspose (256, kernel_size=5, strides=2,,

24



[]:

[]:

encoder . summary (print_fn=logSummary)
print (encoder . summary())
return encoder

def gibDecoder():

decoder = tf.keras.Sequential(name='decoder"')

decoder.add(tf .keras.layers.Conv2DTranspose (64, kernel_size=3, strides=2,
—padding="'same', input_shape=(16,16,256)))

decoder.add(tf .keras.layers.Conv2DTranspose (32, kernel_size=2, strides=2,,
—~padding="'same'))

decoder.add(tf .keras.layers.Conv2DTranspose (32, kernel_size=3, strides=1,,
—~padding="'same'))

decoder.add(tf .keras.layers.Conv2DTranspose (3, kernel_size=3, strides=2,
—padding="'same'))

decoder. summary (print_fn=logSummary)
print (decoder.summary())
return decoder

1.2.2 Kombinieren des Encoder und Decoder zu den Autoencodern

def gibAutoencoder (name) :
x = tf.keras.layers.Input( shape=IMG_SHAPE, name='input_layer' )
encoder, decoder = gibEncoder(), gibDecoder()
autoencoder = tf.keras.Model(x, decoder(encoder(x)), name=name)

print (autoencoder . summary())
return autoencoder

1.2.3 Kompilieren der Modelle mit einem Optimizer
gibKompiliertenAutoencoder (name)

Kombiniert den Encoder und Decoder zu einem Autoencoder und gibt diesen als kom-
piliertes Modell zurtick.

OPTIMIZER_FUNKTION = tf.keras.optimizers.Adam(learning rate=1le-5)
LOSS_FUNKTION = tf.keras.losses.MeanSquaredError ()

def gibKompiliertenAutoencoder (name) :
autoencoder = gibAutoencoder (name)
autoencoder.compile (optimizer=0PTIMIZER_FUNKTION, loss=LOSS_FUNKTION)

return autoencoder

Falls bereits ein Modell mit dem zuvor definierten Namen exestiert, wird dieses geladen. Ist das
nicht der Fall, wird ein neues Modell erstellt. AnschlieBend wird zur Ubersicht der Fehler-Wert
der Modelle ermittelt.

25



[J:

[]:

try:
autoencoder_A = tf.keras.models.load_model(f"./daten/modelle/{NAME}/
~{NAME_AUTOENCODER_A}/")
autoencoder_B = tf.keras.models.load_model(f"./daten/modelle/{NAME}/
—{NAME_AUTOENCODER_B}/")
print ("Modelle von der Festplatte geladen.\n")
except Exception as e:
print (e)
try:
os.mkdir(f"./daten/modelle/{NAME}/")
os.mkdir(f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_A}/")
os.mkdir(f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_B}/")
os.mkdir(f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_A}/Bilder/")
os.mkdir (f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_B}/Bilder/")
except FileExistsError:
pass
autoencoder_A = gibKompiliertenAutoencoder (name="autoencoder_A")
gibKompiliertenAutoencoder (name="autoencoder_B")

autoencoder_B

loss = autoencoder_A.evaluate(datensatz_gesichter_A_test[:32],
—datensatz_gesichter_A_test[:32])
print (£"Aktueller Loss von A ({NAME_AUTOENCODER_A}): {loss}")

loss = autoencoder_B.evaluate(datensatz_gesichter_B_test[:32],

—datensatz_gesichter_B_test[:32])
print (f"Aktueller Loss von B ({NAME_AUTOENCODER_B}): {loss}")

1.3 Trainieren

1.3.1 Festlegen von Checkpoints fiir das Trainieren

Hier werden Callbacks definiert, die spater Trainingsfunktion tibergeben werden. Die Call-
backs enthalten Anweisungen, die wahrend dem Training ausgefiihrt werden. Hierzu zdhlt zum
Beispiel das regelméfiige Speichern des Fortschritts.

from tensorflow.keras.callbacks import ModelCheckpoint
import LoggingCallback as lc

autoencoder_A_logging_callback = lc.LoggingCallback(
pfad_modell=f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_A}/",
bild_A=datensatz_gesichter_A_test[1],
bild_B=datensatz_gesichter_B_test[1]

26



[]:

autoencoder_B_logging_callback = lc.LoggingCallback(
pfad_modell=f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_B}/",
bild_A=datensatz_gesichter_A_test[1],
bild_B=datensatz_gesichter_B_test[1]

autoencoder_A_checkpoint_callback = ModelCheckpoint(
f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_A}/",
monitor='val_loss',
save_best_only=True

autoencoder_B_checkpoint_callback = ModelCheckpoint(
f"./daten/modelle/{NAME}/{NAME_AUTOENCODER_B}/",
monitor='val_loss',
save_best_only=True

1.3.2 Eigentliches Trainieren des Netzes

Nun wird das Modell trainiert. In der dritten Zeile kann die gewiinschte Dauer des Trainings
definiert werden. Die beiden Autoencoder werden abwechselnd fiir jeweils ein Epoche trainiert,
dann wird Encoder zwischen den Modellen getauscht. Dies soll sicherstellen, dass die beiden
Autoencoder die geichen Muster in den Bilder erkennen und somit schlussendlich Bilder félschen.
Die batch_size bestimmt wie viel Bilder gleichzeitig trainiert werden. Ist dieser Wert zu hoch
kommt es schnell zu einem OOM (Out of Memory, also dem Volllaufen des Arbeitsspeichers)
Error.

import time, gc
ZEITPUNKT_ENDE = time.time() + int(8%60%60)

while time.time() < ZEITPUNKT_ENDE:
print("!- Noch fiir “{:.1f}h beschédftigt.".format(( ZEITPUNKT_ENDE-time.
~time() )/3600) )

autoencoder_A.fit(
datensatz_gesichter_A_train,
datensatz_gesichter_A_train,
epochs=1,
batch_size=16,
shuffle=True,
validation_data=(datensatz_gesichter_A_test,
—datensatz_gesichter_A_test),
callbacks=[autoencoder_A_checkpoint_callback,
—autoencoder_A_logging_callback]

)

27



autoencoder_B.layers[1] = autoencoder_A.get_layer('encoder')
gc.collect ()

autoencoder_B.fit(
datensatz_gesichter_B_train,
datensatz_gesichter_B_train,
epochs=1,
batch_size=16,
shuffle=True,
validation_data=(datensatz_gesichter_B_test,,
—datensatz_gesichter_B_test),
callbacks=[autoencoder_B_checkpoint_callback,,
—autoencoder_B_logging_callback]
)
autoencoder_A.layers[1] = autoencoder_B.get_layer('encoder')
gc.collect()

1.3.3 Filschen eines neuen Videos

Nun geht es daran das Gefilschte Video zu erstellen.

Zunidchst hat man hier die Moglichkeit eine Vorschau der Leistungsfahigkeit des Modells zu er-
halten.

Wechsle zwischen autoencoder_A und autoencoder_B, um das Modell zur jeweils anderen Person
zu dndern.

Wechsle zwischen datensatz_gesichter_A_test und datensatz_gesichter_B_test, um die Per-
son, deren Gesichter dem Modell iibergeben werden zu dndern.

Andere den Index nach datensatz_gesichter_*_test, um ein anderes Gesicht der Person
auszuwdéhlen.

[ 1: from matplotlib.pyplot import imshow
%matplotlib inline

img = cv2.cvtColor(autoencoder_A.predict(datensatz_gesichter_A_test[1].
—reshape(1, 128, 128, 3))[0], cv2.COLOR_BGR2RGB)

img = cv2.normalize(img, None, O, 1, cv2.NORM_MINMAX)

imshow (img)

Und abschlieflend kann hier ein Video gefilscht werden. Andere auch hier autoencoder_*, um
das Modell zu wechseln.

[ 1: import Gesichterextrahierer as GE

PFAD_KASKADE = './daten/cascades/haarcascade_frontalface_default.xml'

28



def fake(bild):
bild = bild.astype('float32')
bild /= 255.0
erg = autoencoder_A.predict(bild.reshape(1l, 128, 128, 3))[0]
erg = cv2.normalize(erg, None, 0, 255, cv2.NORM_MINMAX)
return erg

g = GE.Gesichterextrahierer (PFAD_KASKADE)

g.lade('./daten/Biden.mp4"')
g.fuerGesichterMache(fake, 10000, True)

29



Listing 1: Gesichterextrahierer.py

nnn

Ein Skript das sowohl als eigenstdndiges Programm genutzt werden kann, als auch
als Modul importiert werden kann. Erméglicht das Extrahieren und bearbeiten wvon

Gestichtern in Videos.

Nutzung als Modul:
1. Mit dem Pfad zur Kaskade initalisieren.

. Optional die Bildergrofe der Ausgabe mit 'setzeBildergroesse' setzen.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

2
3. Video laden mit 'lade’.
4. Video mit den anderen Methoden

- firGesichterMache
- extrahiereGesichter

- extrahiereUndValidiereGesichter

bearbeiten.

Nutzung als Skript:

-> Mit Python3 und der '-h' Option starten um die Hilfe angezeigt zu bekommen.

nnn

import sys, cv2, time, os

import numpy as np

import face_recognition

class Gesichterextrahierer:

__init__(self, pfad_cascade: str):

self.CASCADE = cv2.CascadeClassifier(pfad_cascade)
self.bildgroesse_output
self.counter

setzeBildgroesse(self, bildgroesse_output):
self .bildgroesse_output = bildgroesse_output

lade(self, pfad_video):
self .pfad_video = pfad_video

self.video
self.fps =

self.frame_height

def play(self):

nmnn

Spielt das geladene Video in einem neuen Fenster ab. Escape beendet die

Wiedergabe.

nmnn

while True:

ist_bild, bild = self.video.read()
if cv2.waitKey(1l) == 27 or not ist_bild:

cv2.VideoCapture(pfad_video)

self.video.get (cv2.CAP_PROP_FPS)
int(self.video.get(cv2.CAP_PROP_FRAME_HEIGHT))
self .frame_width = int(self.video.get(cv2.CAP_PROP_FRAME_WIDTH))

# Ndchsten Frame einlesen



47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

s

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

break
cv2.imshow('Deepfakeskript - Video', bild)
time.sleep(1/self.fps-1)
self.video.set(cv2.CAP_PROP_POS_FRAMES, 1) # Video zuricksetzen, damit
# es wieder eingelesen werden kann
cv2.destroyAllWindows ()

def fuerGesichterMache(self, funktion, max_anzahl_gesichter, speichern=True):
nnn
Firt die ubergebene Funktion fir alle Gesichter in dem Video aus. Es

werden mazimal ein Gesicht pro Bild erkannt.

:funktion: Eine Funktion, der beim Ausfihren ein Parameter, der
Bildausschnitt des Gesichts, als Liste tbergeben wird.
Gibt die Funktion False zurick wird das gerade bearbeitete Bild
ubersprungen.
Gibt die Funktion True wird der Counter erhdéht und das ndchste
Bild geladen, sofern nicht das Mazimum erreicht wurde.
Gibt die Funktion ein Bild als Liste zurick, wird dies anstelle
des tibergebenen Gesichts in das Bild des Videos eingesetzt. Die
Ein- und Ausgabeliste muss die gleiche Form haben.
Es kann von der Funktion aus “self.counter” zugegriffen werden,
um die Anzahl an bearbeiteten Bildern zu erhalten.
:maz_anzahl_gesichter: Definiert die Anzahl an Gesichtern, die mazimal
bearbeitet werden. Die Funktion endet wvorzeitig wenn die
Videodatei zu Ende ist.
:speichern: Bei True wird eine Videodateti abgespeichert, die die
mégliche Anderungen beinhaltet.
Bet False ist dies nicht der Fall.
:return: Gibt die Anzahl an bearbeiteten Bildern zurick.
wnn
if speichern: # Vorbereitung fir das Abspeichern des neuen Videos
pfad_Video_ohne_Endung = ".".join(self.pfad_video.split(".")[:-1])
video_writer = cv2.VideoWriter(
f'{pfad_Video_ohne_Endung} geindert.mpd',
cv2.VideoWriter_fourcc(*'mp4v'),
self.fps,
(self.frame_width, self.frame_height)

ist_bild, bild = self.video.read() # Ersten Frame einlesen

while ist_bild: # Solange das Video nicht zu Ende ist
bild_grau = cv2.cvtColor(bild, cv2.COLOR_BGR2GRAY)
gesichter = self.CASCADE.detectMultiScale(
bild_grau,
scaleFactor=1.3,
minNeighbors=5,
minSize=(self.bildgroesse_output,)*2

31



96

97

98

99

100

101

102

103

104

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

134

135

136

137

138

139

140

141

142

143

144

def

) # Gesichter erkennen
if len(gesichter):
X, y, breite, hoehe = gesichter[0] # Nur das erste Gesicht
gesicht = bild[y:y+hoehe, x:x+breite]l # Kopieren des Gesichts
gesicht_skaliert = cv2.resize(
gesicht,
(self .bildgroesse_output,)*2
)
# Die ibergebene Funktion ausfihren
rueckgabe_f = funktion( gesicht_skaliert )
if type(rueckgabe_f) == bool and rueckgabe_f == False:
break # Mit dem ndchsten Frame fortfahren
if speichern:
if type(rueckgabe_f) != bool:
rueckgabe_f = cv2.resize(
rueckgabe_f,
(breite, hoehe)
)
# Rickgabe der Funktion in das Bild einsetzen
bild[y:y+hoehe, x:x+breite] = rueckgabe_f
video_writer.write(bild) # Frame an das neue Video anhdngen
print("\r"+"Es wurden erfolgreich Jd Bilder bearbeitet."
% self.counter, end='"')
self.counter += 1
elif speichern:
video_writer.write(bild) # Frame an das neue Video anhdngen
# auch wenn kein Gesicht gefunden

# wurde

ist_bild, bild = self.video.read() # Ndchsten Frame einlesen
if self.counter >= max_anzahl_gesichter:
break

if speichern: video_writer.release()
self.video.set(cv2.CAP_PROP_POS_FRAMES, 1) # Video zuricksetzen, damit
# es wieder eingelesen
# werden kann
x = self.counter
self.counter = 0
return x

extrahiereGesichter(self, max_anzahl_gesichter: int, ordner_ausgabe: str):

nmnn

Findet alle Gesichter aus dem Video und speichert sie ab.
:maz_anzahl_gesichter: Definiert die Anzahl an Gesichtern, die mazimal

bearbeitet werden. Die Funktion endet vorzeitig wenn die

Videodatetr zu Ende ist.

32



145 :ordner_ausgabe: Den Pfad zum Ordner in dem die Bilder abgespeichert

146 werden, dieser muss vorhanden sein.

147 e

148 def funktion(bild):

149 cv2.imwrite(os.path.join(

150 ordner_ausgabe, f'Gesicht_{self.counter}.png'), bild)

151 return True

152

153 print ("Exportiere Bilder nach %s." % ordner_ausgabe)

154 anzahl_extrahierter_bilder = self.fuerGesichterMache(

155 funktion,

156 max_anzahl_gesichter,

157 speichern=False

158 )

159 print("\r"+"Es wurden erfolgreich Jd Bilder nach %s exportiert."

160 % (anzahl_extrahierter_bilder, ordner_ausgabe))
161

162

163 def extrahiereUndValidiereGesichter(self, referenzbild: list,

164 max_anzahl_gesichter: int, ordner_ausgabe: str, toleranz=0.6):
165 e

166 Findet alle Gesichter aus dem Video und speichert sie ab, falls sie dem
167 Referenzgesicht ausreichend dhneln.

168

169 :referenzbild: Ein Bild in Form einer Liste das zum Vergleich bei der
170 Validierung verwendet wird.

171 :maz_anzahl_gesichter: Definiert die Anzahl an Gesichtern, die mazimal
172 bearbeitet werden. Die Funktion endet wvorzeitig wenn die

173 Videodate? zu Ende ist.

174 :ordner_ausgabe: Den Pfad zum Ordner in dem die Bilder abgespeichert
175 werden, dieser muss vorhanden sein.

176 :toleranz: Die euklidische Distanz, die maxrimal zwischen den Vekoren,
177 die die zu wvergleichenden Gesichter reprdisentieren,

178 liegen darf, damit diese als von der gleichen Person gelten.
179 (siehe face_recongnition.compare_faces)

180 e

181 encoding_referenz = face_recognition.face_encodings(referenzbild)

182 def funktion(bild):

183 try:

184 # Gesicht in ein Vektorreprdisentation umwandeln

185 encoding_bild = face_recognition.face_encodings(bild) [0]

186 if face_recognition.compare_faces(encoding_referenz,

187 encoding_bild, tolerance=toleranz) [0]:
188 cv2.imwrite(os.path. join( ordner_ausgabe,

189 f'Gesicht_{self.counter}.png'), bild)
190 return True

191 except Exception: pass

192 return False

33



194

195

196

197

198

199

200

201

202

203

204

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

231

232

233

234

235

236

237

238

239

240

241

242

print("Validiere und exportiere Bilder nach %s." % ordner_ausgabe)
anzahl_extrahierter_bilder = self.fuerGesichterMache(

funktion,

max_anzahl_gesichter,

speichern=False

)
print("\r"+"Es wurden erfolgreich Jd Bilder nach %s exportiert."
% (anzahl_extrahierter_bilder, ordner_ausgabe))

def main(argv): # Wird ausgefihrt, wenn das Skript direkt ausgefuhrt wird
bildgroesse_ausgabe = 128
max_anzahl_bilder = 50000
pfad_cascade = "./daten/cascades/haarcascade_frontalface_default.xml"
ordner_ausgabe = "./daten/Gesichter"
pfad_validierungbild = ""
toleranz = 0.6

for index, argument in enumerate(argv):
if argument[0] == '-':
if 'g' == argument[1]:
bildgroesse_ausgabe = int(argv[index+1])
elif 'a' == argument[1]:
max_anzahl_bilder = int(argv[index+1])
elif 'c¢' == argument[1]:
pfad_cascade = argv[index+1]
elif 'o' == argument[1]:
ordner_ausgabe = argv[index+1]
elif 'v' == argument[1]:
pfad_validierungbild = argv[index+1]
elif 't' == argument[1]:
toleranz = float(argv[index+1])
elif 'h' == argument[1]:
print ("Nutzung: ’s [Optionen] [Videodatei]\n" % argv[0])
print ("""Optionen:
-g : GroBe der Ausgabe Bilder in Pixel
-a : Maximale Anzahl der zu extrahierenden Bildern
-c : Pfad fiir die Haarcascade
-0 : Zielordner fiir die Ausgabe
-h : Drucken dieser Hilfenachricht
-v : Pfad zu einem Validierungsbild
-t : Toleranz fir die Gesichtsvalidierung\n""")

return

g = Gesichterextrahierer(pfad_cascade)
g.setzeBildgroesse(bildgroesse_ausgabe)
g.lade(argv[-1])
if pfad_validierungbild:

validierungsbild = cv2.imread(pfad_validierungbild)

34



243

244

245

246

247

248

249

250

251

252

254

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

g.extrahiereUndValidiereGesichter(
validierungsbild,
max_anzahl_bilder,
ordner_ausgabe,
toleranz=toleranz

)

else:
g.extrahiereGesichter (max_anzahl_bilder, ordner_ausgabe)

if name == "__main__":

main(sys.argv)

Listing 2: LoggingCallback.py

nnn

Die Klasse LoggingCallback, erbt von tensorflow.keras.callbacks.Callback

Wird als Instanz beim Trianieren mit der fit-Methode als callback tubergeben. Die
Methoden, welche mit "on_..." beginnen werden zu dem entsprechenden Zeitpunkt
wirend des Trainingsprozesses aufgerufen und dokumentieren den Trainings-—
vortschritt in der Datei 'train.log' im Verzeichnis des Modells. Beti jedem
Trainingsbeginn wird ein Gesicht von jeder der beiden Personen durch das Modell

geschickt und im Verzeichnis 'Bilder' abgespeichert.

nnn

import tensorflow.keras.callbacks
import time, os, cv2

import numpy as np

class LoggingCallback(tensorflow.keras.callbacks.Callback):
def __init__(self, pfad_modell: str, bild_A: list, bild_B: list):
self .pfad_modell = pfad_modell
self.bild_A = bild_A.reshape(1, 128, 128, 3)
self.bild_B = bild_B.reshape(1, 128, 128, 3)
try: os.mkdir(os.path.join(self.pfad_modell, 'Bilder/'))

except FileExistsError: pass

def log(self, text: str):
with open(os.path.join(self.pfad_modell, 'train.log'), "a") as datei:
datei.writelines("{};{}\n".format(time.time(), text) )

def speichereBild(self, bild: list, pfad: str):

bild = cv2.normalize(bild,
None,

35



31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

def

def

def

def

def

alpha = 0,
beta = 255,
norm_type = cv2.NORM_MINMAX,
dtype = cv2.CV_32
)
bild = bild.astype(np.uint8)
cv2.imwrite(pfad, bild)

on_train_begin(self, logs=None):
self.log("Starte Training;")
predicted_A = self .model.predict(self.bild_A) [0]
predicted_B = self.model.predict(self.bild_B) [0]
self.speichereBild(
predicted_A,
os.path. join(self.pfad_modell,
"Bilder/{}_Bild_A.png".format(time.time()) )
)
self.speichereBild(
predicted_B,
os.path. join(self.pfad_modell,
"Bilder/{}_Bild_B.png".format(time.time()) )

on_epoch_begin(self, epoch, logs=None):
logString = "on_epoch_begin;epoch;{};".format (epoch)
for key, val in logs.items():

logString += "{};{};".format(key, val)
self.log(logString)

on_epoch_end(self, epoch, logs=None):
logString = "on_epoch_end;epoch;{};".format (epoch)
for key, val in logs.items():

logString += "{};{};".format(key, val)
self.log(logString)

on_train_batch_begin(self, batch, logs=None):
logString = "on_train_batch_begin;batch;{};".format (batch)
for key, val in logs.items():

logString += "{};{};".format(key, val)
self.log(logString)

on_train_batch_end(self, batch, logs=None):
logString = "on_train_batch_end;batch;{};".format (batch)
for key, val in logs.items():

logString += "{};{};".format(key, val)
self.log(logString)

36



Erklarung zur Seminararbeit

Ich erklare hiermit, dass ich die Seminararbeit ohne fremde Hilfe angefertigt und nur die im
Literaturverzeichnis angefiuihrten Quellen und Hilfsmittel benutzt habe.

Unterschrift des Verfassers

37




