Files
ctensor/tensorfunc.c

290 lines
9.0 KiB
C
Raw Normal View History

#include "tensorfunc.h"
void tensor_fill(tensor t, dtype (*func)(void))
{
/* Filles a tensor with the values provided by a function.
*
* @param t The tensor to fill
* @param func The function providing the values, it is expected to have
* no sidel effects.
*/
assert(!tensor_is_empty(t));
for (uint32_t i = 0; i < t->num_elem; i++) {
t->elements[i] = func();
}
}
void tensor_inspect(const tensor t, void (*func)(dtype))
{
/* Goes over every element in a tensor and calls a function on it.
*
* @param t The tensor that provides the values
* @param func The function that is called with the values
*/
assert(!tensor_is_empty(t));
for (uint32_t i = 0; i < t->num_elem; i++) {
func(t->elements[i]);
}
}
tensor tensor_map(const tensor t, dtype (*func)(dtype))
{
/* Creates a new tensor in which the result of the given function
* with the values of the given tensor as parameters is stored.
*
* @param t The tensor that provides the values
* @param func The map function that is called, it is expected to have no
* side effects
*
* @return The newly created tensor, if it fails NULL is returned
*/
assert(!tensor_is_empty(t));
tensor t2 = tensor_new();
if(t2 == NULL || !_tensor_set_size(t2, t->size, t->rank)) {
tensor_destroy(t2);
return NULL;
}
for (uint32_t i = 0; i < t->num_elem; i++) {
t2->elements[i] = func(t->elements[i]);
}
return t2;
}
void tensor_map_inplace(tensor t, dtype (*func)(dtype))
{
/* Replaces every value in a tensor with the result of the given function
* with the old value as a parameter.
*
* @param t The tensor to operate on
* @param func The map function that is called, it is expected to have no
* side effects
*/
assert(!tensor_is_empty(t));
for (uint32_t i = 0; i < t->num_elem; i++) {
t->elements[i] = func(t->elements[i]);
}
}
tensor tensor_combine(const tensor t1, const tensor t2, dtype (*func)(dtype, dtype))
{
/* Combines every value of two tensors and stores the result in a third
* tensor. t1 and t2 need to have the same shape.
*
* @param t1 The first tensor
* @param t2 The second tensor
* @param func The function that takes in the values of t1 and t2 and
* returns the result that is stored in the created tensor, it is
* expected to have no side effects
*
* @return The tensor with the result of the combination of t1 and t2, if an
* error occurs NULL is returned
*/
assert(!tensor_is_empty(t1));
assert(!tensor_is_empty(t2));
tensor t3;
if (t1->rank != t2->rank) return NULL;
if (!tarray_uint32_equals(t1->size, t2->size, t1->rank)) return NULL;
t3 = tensor_new();
if(t3 == NULL || !_tensor_set_size(t3, t1->size, t1->rank)) {
tensor_destroy(t2);
return NULL;
}
for (uint32_t i = 0; i < t1->num_elem; i++) {
t3->elements[i] = func(t1->elements[i], t2->elements[i]);
}
return t3;
}
bool tensor_combine_inplace(tensor t1, const tensor t2, dtype (*func)(dtype, dtype))
{
/* Combines every value of two tensor and stores the result in the first of
* the tensors. t1 and t2 need to have the same shape.
*
* @param t1 The tensor in which to store the result
* @param t2 The second tensor of the operation
* @param func The function that takes in the values of t1 and t2 and
* returns the result that is stored in t1, it is expected to have
* no side effects
*
* @return true if the operation was successful, false otherwise
*/
assert(!tensor_is_empty(t1));
assert(!tensor_is_empty(t2));
if (t1->rank != t2->rank) return false;
if (!tarray_uint32_equals(t1->size, t2->size, t1->rank)) return false;
for (uint32_t i = 0; i < t1->num_elem; i++) {
t1->elements[i] = func(t1->elements[i], t2->elements[i]);
}
return true;
}
2023-09-15 18:22:37 +02:00
dtype _dtype_scalar_helper;
dtype _tensor_add_scalar_helper(dtype x) { return DTYPE_ADD(x, _dtype_scalar_helper); }
dtype _tensor_sub_scalar_helper(dtype x) { return DTYPE_SUB(x, _dtype_scalar_helper); }
dtype _tensor_mul_scalar_helper(dtype x) { return DTYPE_MUL(x, _dtype_scalar_helper); }
dtype _tensor_div_scalar_helper(dtype x) { return DTYPE_DIV(x, _dtype_scalar_helper); }
void tensor_add_scalar(tensor t, dtype scalar)
{
/* Adds a fixed scalar value to all the values of a tensor.
*
* @param t The tensor to operate on
* @param scalar The value to add
*/
2023-09-15 18:22:37 +02:00
_dtype_scalar_helper = scalar;
tensor_map_inplace(t, &_tensor_add_scalar_helper);
}
void tensor_sub_scalar(tensor t, dtype scalar)
{
/* Subtracts a fixed scalar value from all the values of a tensor.
*
* @param t The tensor to operate on
* @param scalar The value to subtract
*/
2023-09-15 18:22:37 +02:00
_dtype_scalar_helper = scalar;
tensor_map_inplace(t, &_tensor_sub_scalar_helper);
}
void tensor_mul_scalar(tensor t, dtype scalar)
{
/* Multiplies a fixed scalar value with all the values of a tensor.
*
* @param t The tensor to operate on
* @param scalar The value to multiply
*/
2023-09-15 18:22:37 +02:00
_dtype_scalar_helper = scalar;
tensor_map_inplace(t, &_tensor_mul_scalar_helper);
}
void tensor_div_scalar(tensor t, dtype scalar)
{
/* Divides all the values of a tensor by a fixed scalar value.
*
* @param t The tensor to operate on
* @param scalar The value to divide by
*/
2023-09-15 18:22:37 +02:00
_dtype_scalar_helper = scalar;
tensor_map_inplace(t, &_tensor_mul_scalar_helper);
}
dtype _tensor_add_helper(dtype x, dtype y) { return DTYPE_ADD(x, y); }
dtype _tensor_sub_helper(dtype x, dtype y) { return DTYPE_SUB(x, y); }
dtype _tensor_mul_helper(dtype x, dtype y) { return DTYPE_MUL(x, y); }
dtype _tensor_div_helper(dtype x, dtype y) { return DTYPE_DIV(x, y); }
bool tensor_add_inplace(tensor t1, const tensor t2)
{
/* Adds the values of t2 onto the values of t1. t1 and t2 need to have the
* same shape.
*
* @param t1 The tensor on which the values of t2 are added
* @param t2 The tensor whose values are added
*
* @return true if the operation was successful, false otherwise
*/
return tensor_combine_inplace(t1, t2, &_tensor_add_helper);
}
bool tensor_sub_inplace(tensor t1, const tensor t2)
{
/* Subtracts the values of t2 from the values of t1. t1 and t2 need to have
* the same shape.
*
* @param t1 The tensor from which the values of t2 are subtracted
* @param t2 The tensor whose values are subtracted
*
* @return true if the operation was successful, false otherwise
*/
return tensor_combine_inplace(t1, t2, &_tensor_sub_helper);
}
bool tensor_mul_inplace(tensor t1, const tensor t2)
{
/* Multiplies the values of t2 onto t1 element wise. t1 and t2 need to
* have the same shape.
*
* @param t1 The tensor to multiply onto
* @param t2 The tensor to multiply with
*
* @return true if the operation was successful, false otherwise
*/
return tensor_combine_inplace(t1, t2, &_tensor_mul_helper);
}
bool tensor_div_inplace(tensor t1, const tensor t2)
{
/* Divides the values of t2 by the values of t1 element wise. t1 and t2
* need to have the same shape.
*
* @param t1 The tensor to devide
* @param t2 The tensor to devide by
*
* @return true if the operation was successful, false otherwise
*/
return tensor_combine_inplace(t1, t2, &_tensor_div_helper);
}
tensor tensor_add(const tensor t1, const tensor t2)
{
/* Adds two tensors returning the result as a tensor. t1 and t2 need to
* have the same shape.
*
* @param t1 The first tensor to add
* @param t2 The second tensor to add
*
* @return The result of the operation, NULL if an error occurs
*/
return tensor_combine(t1, t2, &_tensor_add_helper);
}
tensor tensor_sub(const tensor t1, const tensor t2)
{
/* Subtracts two tensors returning the result as a tensor. t1 and t2 need
* to have the same shape.
*
* @param t1 The tensor to subtract from
* @param t2 The tensor that is subtracted
*
* @return The result of the operation, NULL if an error occurs
*/
return tensor_combine(t1, t2, &_tensor_sub_helper);
}
tensor tensor_mul(const tensor t1, const tensor t2)
{
/* Multiplies two tensors element wise returning the result as a tensor.
* t1 and t2 need to have the same shape.
*
* @param t1 The first tensor to multipy
* @param t2 The second tensor to multipy
*
* @return The result of the operation, NULL if an error occurs
*/
return tensor_combine(t1, t2, &_tensor_mul_helper);
}
tensor tensor_div(const tensor t1, const tensor t2)
{
/* Divides two tensors element wise returning the result as a tensor. t1
* and t2 need to have the same shape.
*
* @param t1 The dividend
* @param t2 The divisor
*
* @return The result of the operation, NULL if an error occurs
*/
return tensor_combine(t1, t2, &_tensor_div_helper);
}